
Exponential Stochastic Cellular Automata for
Massively Parallel Inference

Manzil Zaheer
Carnegie Mellon University,

manzil@cmu.edu

Michael Wick
Oracle Labs,

michael.wick@oracle.com

Jean-Baptiste Tristan
Oracle Labs,

jean.baptiste.tristan@oracle.com

Alex Smola
Carnegie Mellon University,

alex@smola.org

Guy L. Steele Jr.
Oracle Labs,

guy.steele@oracle.com

Abstract
We propose an embarrassingly parallel, memory efficient inference algorithm for
latent variable models in which the complete data likelihood is in the exponential
family. The algorithm is a stochastic cellular automaton and converges to a valid
maximum a posteriori fixed point. Applied to latent Dirichlet allocation we find
that our algorithm is over an order of magnitude faster than the fastest current
approaches. A simple C++/MPI implementation on a 4-node cluster samples 570
million tokens per second. We process 3 billion documents and achieve predictive
power competitive with collapsed Gibbs sampling and variational inference.

1 Introduction

In the past decade, frameworks such as stochastic gradient descent (SGD) [18] and map-reduce [5]
have enabled machine learning algorithms to scale to larger and larger datasets. However, these
frameworks are not always applicable to Bayesian latent variable models with rich statistical de-
pendencies and intractable gradients. Variational methods [12] and Markov chain Monte-Carlo
(MCMC) [7] have thus become the sine qua non for inferring the posterior in these models.

Sometimes—due to the concentration of measure phenomenon associated with large sample sizes—
computing the full posterior is unnecessary and maximum a posteriori (MAP) estimates suffice. It
is hence tempting to employ gradient descent, but for latent variable models such as latent Dirichlet
allocation (LDA), calculating gradients involves expensive expectations over rich sets of variables
[17]. MCMC is an appealing alternative, but algorithms such as the Gibbs sampler are inherently
sequential and the extent to which they can be parallelized depends heavily upon how the structure
of the statistical model interacts with the data. For instance, chromatic sampling [8] is infeasible
for LDA, due to its dependence structure. Instead, we employ stochastic cellular automata (SCA),
which like conventional cellular automata are massively parallel, but with stochastic updates.

We propose exponential SCA (ESCA) for inference in latent variable models with complete data
likelihood in the exponential family. ESCA is embarassingly parallel because it is an SCA, and
has a minimal memory footprint because it stores only the data and the sufficient statistics (by the
very definition of sufficient statistics, the footprint cannot be further reduced). In contrast, varia-
tional approaches such as stochastic variational inference (SVI) [11] require storing the variational
parameters, while MCMC-based methods, such as YahooLDA [20] require storing the latent vari-
able assignments. Furthermore, our algorithm employs double-buffering for lock-free parameter
updates (assuming atomic increments) while enabling the use of approximate counters. Thus, we
substantially reduce memory costs and communication requirements in distributed enviroments.

1

2 Exponential SCA

Stochastic cellular automata (SCA), also known as probabilistic cellular automata, or locally-
interacting Markov chains, are a stochastic version of a discrete-time, discrete-space dynamical
system in which a noisy local update rule is homogeneously and synchronously applied to every
site of a discrete space. They have been studied in statistical physics, mathematics, and computer
science, and some progress has been made toward understanding their ergodicity and equilibrium
properties. A recent survey [14] is an excellent introduction to the subject, and a dissertation [13]
contains a comprehensive and precise presentation of SCA. Formally, the automaton, is given by an
evolution function Φ : S −→ S over the state space S = Z −→ C which is a mapping from the
space of cell identifiers Z to cell values C. The global evolution function applies a local function
φz(c1, c2, · · · , cr) 7→ c s.t. ci = s(zi) to every cell z ∈ Z . That is, φ examines the values of each
of the neighbors of cell z and then stochastically computes a new value c. The dynamics begin with
a state s0 ∈ S that can be configured using the data or a heuristic. Exponential SCA (ESCA) is
based on SCA but achieves better computational efficiency by exploiting the structure of the suffi-
cient statistics for latent variable models in which the complete data likelihood is in the exponential
family. Most importantly, the local update function φ for each cell depends only upon the sufficient
statistics and thus does not scale linearly with the number of neighbors.

2.1 Latent Variable Exponential Family

Latent variable models are useful when reasoning about partially observed data such as collections
of text or images in which each i.i.d. data point is a document or image. Since the same local model
is applied to each data point, they have the following form

p(z,x, η) = p(η)
∏
i

p (zi, xi|η) . (1)

Our goal is to obtain a MAP estimate for the parameters η that explain the data x through the latent
variables z. To expose maximum parallelism, we want each cell in the automaton to correspond to a
data point and its latent variable. However, this is problematic because in general all latent variables
depend on each other via the global parameters η and a naive approach to updating a single cell
would then require examining every other cell in the automaton.

Fortunately, if we further suppose that the complete data likelihood is in the exponential family,
i.e., p(zi, xi|η) = exp (〈T (zi, xi) , η〉 − g(η)) then the sufficient statistics are given by T (z,x) =∑
i T (zi, xi) and we can thus express any estimator of interest as a function of just T (z,x) which

factorizes over the data. Further, when employing expectation maximization (EM), the M-step is
possible in closed form for many members of the exponential family. This allows us to reformulate
the cell level updates to depend only upon the sufficient statistics instead of the neighboring cells.
The idea is that, unlike SCA (or MCMC in general) which produces a sequence of states that corre-
spond to complete variable assignments s0, s1, . . . via a transition kernel q(st+1|st), ESCA produces
a sequence of sufficient statistics T 0, T 1, . . . directly via an evolution function Φ(T t) 7→ T t+1.

2.2 Stochastic EM

Before we present ESCA, we first describe stochastic EM (SEM). Suppose we want the MAP esti-
mate for η, maxη p(x, η) = maxη

∫
p(z,x, η)µ(dz) and employ expectation maximization (EM):

E-step Compute in parallel p(zi|xi, η(t)).
M-step Find η(t+1) that maximizes the expected log-likelihood with respect to the conditional

η(t+1) = arg max
η

Ez|x,η(t) [log p(z,x, η)] = ξ−1

(
1

n+ n0

∑
i

Ez|x,η(t) [T (zi, xi)] + T0

)

where ξ(η) = ∇g(η) is invertible as ∇2g(θ) � 0 and n0, T0 parametrize the conjugate prior.
Although EM exposes substantial parallelism, it is difficult to scale, since the dense structure
p(zi|xi, η(t)) defines values for all possible outcomes for z and thus puts tremendous pressure on
memory bandwidth. To overcome this we introduce sparsity by employing stochastic EM (SEM)
[3]. SEM introduces an S-step after the E-step that replaces the full distribution with a single sample:

2

(a) Phase 1 (b) Phase 2
Figure 1: Efficient (re)use of buffers

S-step Sample z(t)i ∼ p(zi|xi; η(t)) in parallel.

Subsequently, we perform the M-step using the imputed data instead of the expectation. This sim-
ple modification overcomes the computational drawbacks of EM for cases in which sampling from
p(zi|xi; η(t)) is feasible. We can now employ fast samplers, such as the alias method, exploit spar-
sity, reduce CPU-RAM bandwidth while still maintaining massive parallelism. More importantly,
the S-step also enables all three steps to now be expressed in terms of the current sufficient statistics.
This enables distributed and parallel implementations that efficiently execute on an SCA.

2.3 ESCA for Latent Variable Models

We now present ESCA as SEM on an SCA in which each cell corresponds to a data point with its
associated latent variables. Define an SCA over the state space S of the form S = Z −→ K × X ,
where Z is the set of cell identifiers (e.g., one per data point), K is the domain of latent variables,
and X is the domain of the observed data. The initial state s0 is the map defined as follows: for
every data point, we associate a cell z to the pair (kz, x) where kz is chosen at random from K and
independently from kz′ for all z′ 6= z. This gives us the initial state s0 = z 7→ (kz, x).

We now need to describe the evolution function Φ. For state s and cell z define the distribution:
pz(k|s) = f(z, T (s)) (2)

Assuming that s(z) = (k, x) and that k′ is a sample from pz (hence the name “stochastic” cellular
automaton) we define the local update function as φ(s, z) = (k′, x) where s(z) = (k, x) and k′ ∼
pz(· |s). That is, the observed data remain unchanged, but we choose a new latent variable according
to the distribution pz induced by the state. We obtain the evolution function of the stochastic cellular
automaton by applying the function φ uniformly on every cell Φ(s) = z 7→ φ(s, z). Finally, the
SCA algorithm simulates the evolution function Φ starting with s0. We remark that ESCA converges
weakly to a distribution with mean equal to some root of the score function (∇η log p(xi; η)) and
thus a MAP fixed point. See Appendix D for details.

Our implementation has two copies of the data structure containing sufficient statistics T (0) and
T (1). We do not compute the values T (z,x) but maintain their sum as we impute values of the
cells/latent variables. During iteration 2t of the evolution function, we apply Φ by reading from
T (0) and incrementing T (1) as we sample the latent variables (Figure 1). Then in the next iteration
2t+1 we reverse the roles of data structure, i.e. read from T (1) and increment T (0). See Algorithm 1.

Algorithm 1 ESCA
1: Randomly initialize each cell
2: for t = 0→ num iterations do
3: for all cell z independently in parallel do
4: Read sufficient statistics from T (t mod 2)

5: Compute stochastic updates using pz(k|s)
6: Write sufficient statistics to T (t+1 mod 2)

7: end for
8: end for

Use of such read/write buffers offer a virtually lock-free (assuming atomic increments) implemen-
tation scheme for ESCA and is analogous to double-buffering in computer graphics. Although there
is a synchronization barrier after each round, its effect is mitigated because each cell’s work de-
pends only upon the sufficient statistics and thus does the same amount of work. Therefore, evenly
balancing the work load across computation nodes is trivial, even for a heterogeneous cluster.

3

3 ESCA for LDA

Latent Dirichlet allocation (LDA) [1] is a must-have for analytic platforms and consequently needs
to scale. LDA models each document m of M documents as a distribution θm over K topics. A
topic k is a distribution φk over V vocabulary words. A document m comprises Nm words wmn
each with a latent variable zmn indicating a topic assignment. Both distributions θm and φk have a
Dirichlet prior, parameterized respectively with a constant α and β. See Appendix B for details.

ESCA simulates the inference steps of SEM which we derive for LDA in Appendix B. For LDA, the
state space is S = Z −→ K ×M× V where Z is the set of cell identifiers (one per token in our
corpus), K is a set of K topics,M is a set of M document identifiers, and V is a set of V identifiers
for the vocabulary words. From this we obtain the full conditional of LDA for line 5 of Algorithm 1

pz(k|s) ∝ (Dmk + α)× Wkv + β

Tk + β V
(3)

where Dmk =
∣∣∣{ zmn | zmn = k

}∣∣∣, Wkv =
∣∣∣{ zmn | wmn = v, zmn = k

}∣∣∣, and Tk =
V∑
v=1

Wkv .

It reassuring to see that the boxed region of Equation 3 is similar to respective formulas in collapsed
Gibbs sampling (CGS) [9] and collapsed variational Bayes (CVB0) [21]. For LDA, ESCA implicitly
performs SGD with Frank-Wolfe updates, alluding to a convergence rate (Appendix C).

4 Experiments

Software & hardware All algorithms are implemented in C++11. We implement multithreaded
parallelization within a node using the work-stealing Fork/Join framework, and the distribution
across multiple nodes using the process binding to a socket over MPI. We implement ESCA with a
sparse arraysD counting topics per documents and Vose’s alias method to draw from discrete distri-
butions. We run our experiments on a small cluster of 4 nodes connected through 10Gb/s Ethernet.
Each node has two 9-core Intel Xeon E5 processors for a total of 36 hardware threads per node.

Datasets We employ three datasets: PubMed abstracts (141,043 vocabulary words, 8.2 million doc-
uments, 737 million tokens), Wikipedia (210,223 words, 6.6 million documents, 1.1 billion tokens)
and a large proprietary dataset (140,000 words, 3 billion documents, and 171 billion tokens).

Evaluation To evaluate the proposed method we use predicting power as a metric by calculating
the per-word log-likelihood (equivalent to negative log of perplexity) on 10,000 held-out documents
conditioned on the trained model. We set K = 1000 to demonstrate performance for a large number
of topics. The hyper parameters are set as α = 50/K and β = 0.1 as suggested in [10]; other
systems such as YahooLDA and Mallet also use this as the default parameter setting. The results
are in Figure 2 and additional experiments are in Appendix H. Finally, for the large dataset, our
implementation of ESCA (only 300 lines of C++) processes 570 million tokens per second (tps) on
our modest 4-node cluster. In comparison, some of the best existing systems achieve 112 million tps
(F+LDA, personal communication) and 60 million tps (lightLDA) [25]. See Table 1 for details.

Table 1: Comparison with existing scalable LDA frameworks.
Method Dataset Infrastructure Processing speed
YahooLDA [20] 140K vocab, 8.2M docs, 797M tokens 10 machines 2010 12.87M tokens/s
lightLDA [25] 50K vocab, 1.2B docs, 200B tokens 24 machines 2014 60M tokens/s
F+LDA [24] 1M vocab, 29M docs, 1.5B tokens 32 machines 2014 110M tokens/s
ESCA 210K vocab, 6B docs, 128B tokens 8 Amazon c4.8x large 503M tokens/s

Discussion

We proposed an embarassingly parallel, memory efficient MAP inference algorithm that executes on
an SCA and applies to a large class of latent variable models. Our algorithm exposes many system
level optimizations such as approximate counters, and outperforms current best approaches.

4

Iteration
0 20 40 60 80 100

pe
r

w
or

d
lo

g-
lik

el
ih

oo
d

-9.5

-9

-8.5

-8

-7.5

-7

-6.5
pubmed 1000

SCA
CGS
CVB0

(a) PubMed, K=1000, α=0.05, β=0.1

Iteration
0 20 40 60 80 100

pe
r

w
or

d
lo

g-
lik

el
ih

oo
d

-9.5

-9

-8.5

-8
wiki 1000

SCA
CGS
CVB0

(b) Wikipedia, K=1000, α=0.05, β=0.1

Time [min]
0 50 100 150 200 250

pe
r

w
or

d
lo

g-
lik

el
ih

oo
d

-9.5

-9

-8.5

-8

-7.5

-7

-6.5
pubmed 1000

SCA
CGS
CVB0

(c) Pubmed, K=1000, α=0.05, β=0.1

Time [min]
0 50 100 150 200 250

pe
r

w
or

d
lo

g-
lik

el
ih

oo
d

-9.5

-9

-8.5

-8
wiki 1000

SCA
CGS
CVB0

(d) Wikipedia, K=1000, α=0.05, β=0.1

Figure 2: Evolution of log likelihood on Wikipedia and Pubmed over number of iterations and time.

References
[1] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet allocation. Journal of

Machine Learning Research, 3:993–1022, March 2003.

[2] J. Canny. Gap: a factor model for discrete data. In Proceedings of the 27th annual international
ACM SIGIR conference on Research and development in information retrieval, pages 122–129.
ACM, 2004.

[3] Gilles Celeux and Jean Diebolt. The sem algorithm: a probabilistic teacher algorithm derived
from the em algorithm for the mixture problem. Computational statistics quarterly, 2(1):73–
82, 1985.

[4] Rajarshi Das, Manzil Zaheer, and Chris Dyer. Gaussian lda for topic models with word embed-
dings. In Proceedings of the 53rd Annual Meeting of the Association for Computational Lin-
guistics and the 7th International Joint Conference on Natural Language Processing (Volume
1: Long Papers), pages 795–804, Beijing, China, July 2015. Association for Computational
Linguistics.

[5] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on large clusters.
Commun. ACM, 51(1):107–113, January 2008.

[6] Anton K Formann and Thomas Kohlmann. Latent class analysis in medical research. Statistical
methods in medical research, 5(2):179–211, 1996.

[7] W. R. Gilks, S. Richardson, and D. J. Spiegelhalter. Markov Chain Monte Carlo in Practice.
Chapman & Hall, 1995.

[8] Joseph Gonzalez, Yucheng Low, Arthur Gretton, and Carlos Guestrin. Parallel gibbs sampling:
from colored fields to thin junction trees. In International Conference on Artificial Intelligence
and Statistics, pages 324–332, 2011.

[9] Thomas L. Griffiths and Mark Steyvers. Finding scientific topics. Proc. National Academy of
Sciences of the United States of America, 101(suppl 1):5228–5235, 2004.

5

[10] T.L. Griffiths and M. Steyvers. Finding scientific topics. Proceedings of the National Academy
of Sciences, 101:5228–5235, 2004.

[11] Matthew D. Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational
inference. Journal of Machine Learning Research, 14:1303–1347, May 2013.

[12] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An intro-
duction to variational methods for graphical models. Mach. Learn., 37(2):183–233, November
1999.

[13] Pierre-Yves Louis. Automates Cellulaires Probabilistes : mesures stationnaires, mesures de
Gibbs associées et ergodicité. PhD thesis, Université des Sciences et Technologies de Lille
and il Politecnico di Milano, September 2002.

[14] Jean Mairesse and Irène Marcovici. Around probabilistic cellular automata. Theoretical Com-
puter Science, 559:42–72, November 2014.

[15] R. Neal. Markov chain sampling methods for dirichlet process mixture models. Technical
Report 9815, University of Toronto, 1998.

[16] Søren Feodor Nielsen. The stochastic em algorithm: estimation and asymptotic results.
Bernoulli, pages 457–489, 2000.

[17] Sam Patterson and Yee Whye Teh. Stochastic gradient riemannian langevin dynamics on the
probability simplex. In Advances in Neural Information Processing Systems, pages 3102–3110,
2013.

[18] Herbert Robbins and Sutton Monro. A stochastic approximation method. Ann. Math. Statist.,
22(3):400–407, 09 1951.

[19] Ruslan Salakhutdinov, Sam Roweis, and Zoubin Ghahramani. Relationship between gradient
and em steps in latent variable models.

[20] Alexander Smola and Shravan Narayanamurthy. An architecture for parallel topic models.
Proc. VLDB Endowment, 3(1-2):703–710, September 2010.

[21] Whye Yee Teh, David Newman, and Max Welling. A collapsed variational Bayesian infer-
ence algorithm for latent Dirichlet allocation. In Advances in Neural Information Processing
Systems 19, NIPS 2006, pages 1353–1360. MIT Press, 2007.

[22] Max A Woodbury, Jonathan Clive, and Arthur Garson. Mathematical typology: a grade of
membership technique for obtaining disease definition. Computers and biomedical research,
11(3):277–298, 1978.

[23] Lei Xu and Michael I Jordan. On convergence properties of the em algorithm for gaussian
mixtures. Neural computation, 8(1):129–151, 1996.

[24] Hsiang-Fu Yu, Cho-Jui Hsieh, Hyokun Yun, SVN Vishwanathan, and Inderjit S Dhillon. A
scalable asynchronous distributed algorithm for topic modeling. In Proceedings of the 24th
International Conference on World Wide Web, pages 1340–1350. International World Wide
Web Conferences Steering Committee, 2015.

[25] Jinhui Yuan, Fei Gao, Qirong Ho, Wei Dai, Jinliang Wei, Xun Zheng, Eric Po Xing, Tie-Yan
Liu, and Wei-Ying Ma. Lightlda: Big topic models on modest computer clusters. In Proceed-
ings of the 24th International Conference on World Wide Web, pages 1351–1361. International
World Wide Web Conferences Steering Committee, 2015.

6

A (Stochastic) EM in General

Expectation-Maximization (EM) is an iterative method for finding the maximum likelihood or
maximum a posteriori (MAP) estimates of the parameters in statistical models when data is only
partially, or when model depends on unobserved latent variables. This section is inspired from
http://www.ece.iastate.edu/∼namrata/EE527 Spring08/emlecture.pdf

We derive EM algorithm for a very general class of model. Let us define all the quantities of interest.

Table 2: Notation
Symbol Meaning

x Observed data
z Unobserved data

(x, z) Complete data
fX;η(x; η) marginal observed data density
fZ;η(z; η) marginal unobserved data density

fX,Z;η(x, z; η) complete data density/likelihood
fZ|X;η(z|x; η) conditional unobserved-data (missing-data) density.

Objective: To maximize the marginal log-likelihood or posterior, i.e.
L(η) = log fX;η(x; η). (4)

Assumptions:

1. zi are independent given η. So

fZ;η(z; η) =

N∏
i=1

fZi;η(zi; η), (5)

2. xi are independent given missing data zi and η. So

fX,Z;η(x, z; η) =

N∏
i=1

fXi,Zi;η(xi, zi; η). (6)

As a consequence we obtain:

fZ|X;η(z|x; η) =

N∏
i=1

fZi|Xi;η(zi|xi; η), (7)

Now,

L(η) = log fX;η(x; η) = log fX,Z;η(x, z; η)− log fZ|X;η(z|x; η) (8)

or, summing across observations,

L(η) =

N∑
i=1

log fXi;η(xi; η) =

N∑
i=1

log fXi,Zi;η(xi, zi; η)−
N∑
i=1

log fZi|Xi;η(zi|xi; η). (9)

Let us take the expectation of the above expression with respect to fZi|Xi;η(zi|xi; ηp), where we
choose η = ηp:

N∑
i=1

EZi|Xi;η [log fXi;η(xi; η)|xi; ηp]

=

N∑
i=1

EZi|Xi;η [log fXi,Zi;η(xi, zi; η)|xi; ηp]−
N∑
i=1

EZi|Xi;η

[
log fZi|Xi;η(zi|xi; η)|xi; ηp

]
(10)

7

SinceL(η) = log fX;η(x; η) does not depend on z, it is invariant for this expectation. So we recover:

L(η) =

N∑
i=1

EZi|Xi;η [log fXi,Zi;η(xi, zi; η)|xi; ηp]−
N∑
i=1

EZi|Xi;η

[
log fZi|Xi;η(zi|xi; η)|xi; ηp

]
= Q(η|ηp)−H(η|ηp).

(11)
Now, (11) may be written as

Q(η|ηp) = L(η) + H(η|ηp)︸ ︷︷ ︸
≤H(ηp|ηp)

(12)

Here, observe that H(η|ηp) is maximized (with respect to η) by η = ηp, i.e.
H(η|ηp) ≤ H(ηp|ηp) (13)

Simple proof using Jensen’s inequality.

As our objective is to maximize L(η) with respect to η, if we maximize Q(η|ηp) with respect to η,
it will force L(η) to increase. This is what is done repetitively in EM. To summarize, we have:

E-step : Compute fZi|Xi;η(zi|xi; ηp) using current estimate of η = ηp.

M-step : Maximize Q(η|ηp) to obtain next estimate ηp+1.

Now assume that the complete data likelihood belongs to the exponential family, i.e.
fXi,Zi;η(xi, zi; η) = exp (〈T (zi, xi) , η〉 − g(η)) (14)

(a) Same initialization

(b) Bad initialization for SEM

Figure 3: Performance of SEM

8

then

Q(η|ηp) =

N∑
i=1

EZi|Xi;η [log fXi,Zi;η(xi, zi; η)|xi; ηp]

=

N∑
i=1

EZi|Xi;η [〈T (zi, xi) , η〉 − g(η)|xi; ηp]

(15)

To find the maximizer, differentiate and set it to zero:
1

N

∑
i

EZi|Xi;η [〈T (zi, xi) , η〉 |xi; ηp] =
dg(η)

dη
(16)

and one can obtain the maximizer by solving this equation.

Stochastic EM (SEM) introduces an additional simulation after the E-step that replaces the full
distribution with a single sample:

S-step Sample zi ∼ fZi|Xi;η(zi|xi; ηp)

This essentially means we replace E[·] with an empirical estimate. Thus, instead of solving (16), we
simply have:

1

N

∑
i

T (zi, xi) =
dg(η)

dη
. (17)

Computing and solving this system of equations is considerably easier than (16).

Now to demonstrate that SEM is well behaved and works in practice, we run a small experi-
ment. Consider the problem of estimating the parameters of a Gaussian mixture. We choose a
2-dimensional Gaussian with K = 30 clusters and 100,000 training points and 1,000 test points.
We run EM and SEM with the following initialization:

• Both SEM and EM are provided the same initialization.
• SEM is deliberately provided a bad initialization, while EM is not.

The log-likelihood on the heldout test set is shown in Figure 3.

9

B (S)EM Derivation for LDA

We derive an EM procedure for LDA.

B.1 LDA Model

In LDA, we model each documentm of a corpus ofM documents as a distribution θm that represents
a mixture of topics. There are K such topics, and we model each topic k as a distribution φk over
the vocabulary of words that appear in our corpus. Each document m contains Nm words wmn
from a vocabulary of size V , and we associate a latent variable zmn to each of the words. The latent
variables can take one of K values that indicate which topic the word belongs to. We give each of
the distributions θm and φk a Dirichlet prior, parameterized respectively with a constant α and β.
More concisely, LDA has the following mixed density.

p(w, z,θ,φ) =

[
M∏
m=1

Nm∏
n=1

Cat(wmn | φzmn
) Cat(zmn | θm)

][
M∏
m=1

Dir(θm | α)

][
K∏
k=1

Dir(φk | β)

]
(18)

The choice of a Dirichlet prior is not a coincidence: we can integrate all of the variables θm and φk
and obtain the following closed form solution.

p(w, z) =

[
M∏
m=1

Pol
(
{zm′n | m′ = m},K, α

)][K∏
k=1

Pol
(
{wmn | zmn = k}, V, β

)]
(19)

where Pol is the Polya distribution

Pol(S,X, η) =
Γ(η K)

Γ(|S|+ η X)

X∏
x=1

Γ
(∣∣{z | z ∈ S, z = x}

∣∣+ η
)

Γ(η)
(20)

for all j

for all i
for all k

α θm zmn wmn φk β

Figure 4: LDA Graphical Model

Algorithm 2 LDA Generative Model
input: α,β

1: for k = 1→ K do
2: Choose topic φk ∼ Dir(β)
3: end for
4: for all document m in corpus D do
5: Choose a topic distribution θm ∼ Dir(α)
6: for all word index n from 1 to Nm do
7: Choose a topic zmn ∼ Categorical(θm)
8: Choose word wmn ∼ Categorical(φzmn)
9: end for

10: end for

The joint probability density can be expressed as:

p(W,Z, θ, φ|α, β) =

[
K∏
k=1

p(φk|β)

][
M∏
m=1

p(θm|α)

Nm∏
n=1

p(zmn|θm)p(wmn|φzmn)

]

∝

[
K∏
k=1

V∏
v=1

φβ−1kv

][
M∏
m=1

(
K∏
k=1

θα−1mk

)
Nm∏
n=1

θmzmnφzmnwmn

] (21)

10

B.2 Expectation Maximization

We begin by marginalizing the latent variable Z and finding the lower bound for the likeli-
hood/posterior:

log p(W, θ, φ|α, β) = log
∑
Z

p(W,Z, θ, φ|α, β)

=

M∑
m=1

Nm∑
n=1

log

K∑
k=1

p(zmn = k|θm)p(wmn|φk)

+

K∑
k=1

log p(φk|β) +

M∑
m=1

log p(θm|α)

=

M∑
m=1

Nm∑
n=1

log

K∑
k=1

q(zmn = k|wmn)
p(zmn = k|θm)p(wmn|φk)

q(zmn = k|wmn)

+

K∑
k=1

log p(φk|β) +
M∑
m=1

log p(θm|α)

(Jensen Inequality) ≥
M∑
m=1

Nm∑
n=1

K∑
k=1

q(zmn = k|wmn) log
p(zmn = k|θm)p(wmn|φk)

q(zmn = k|wmn)

+

K∑
k=1

log p(φk|β) +

M∑
m=1

log p(θm|α)

(22)
Let us define the following functional:

F (q, θ, φ) := −
M∑
m=1

Nm∑
n=1

DKL(q(zmn|wmn)||p(zmn|wmn, θm, φ))

+

M∑
m=1

Nm∑
n=1

p(wmn|θm, φ) +

K∑
k=1

log p(φk|β) +

M∑
m=1

log p(θm|α)

(23)

B.2.1 E-Step

In the E-step, we fix θ, φ and maximize F for q. As q appears only in the KL-divergence term, it
is equivalent to minimizing the KL-divergence between q(zmn|wmn) and p(zmn|wmn, θm, φ). We
know that for any distributions f and g the KL-divergence is minimized when f = g and is equal to
0. Thus, we have

q(zmn = k|wmn) = p(zmn = k|wmn, θm, φ)

=
θmkφkwmn∑K

k′=1 θmk′φk′wmn

(24)

For simplicity of notation, let us define

qmnk =
θmkφkwmn∑K

k′=1 θmk′φk′wmn

(25)

B.2.2 M-Step

In the E-step, we fix q and maximize F for θ, φ. As this will be a constrained optimization (θ and φ
must lie on simplex), we use standard constrained optimization procedure of Lagrange multipliers.

11

The Lagrangian can be expressed as:

L(θ, φ, λ, µ) =

M∑
m=1

Nm∑
m=1

K∑
k=1

q(zmn = k|wmn) log
p(zmn = k|θm)p(wmn|φk)

q(zmn = k|wmn)
+

K∑
k=1

log p(φk|β)

+

M∑
m=1

log p(θm|α) +

K∑
k=1

λk

(
1−

V∑
v=1

φkv

)
+

M∑
m=1

µi

(
1−

K∑
k=1

θmk

)

=

M∑
m=1

Nm∑
n=1

K∑
k=1

qmnk log θmkφkwmn
+

K∑
k=1

V∑
v=1

(βv − 1) log φkv +

M∑
m=1

K∑
k=1

(αk − 1) log θmk

+

K∑
k=1

λk

(
1−

V∑
v=1

φkv

)
+

M∑
m=1

µm

(
1−

K∑
k=1

θmk

)
+ const.

(26)

Maximizing θ Taking derivative with respect to θmk and setting it to 0, we obtain

∂L
∂θmk

= 0 =

Nm∑
j=1

qmnk + αk − 1

θmk
− µm

µmθmk =

Ni∑
j=1

qmnk + αk − 1

(27)

After solving for µm, we finally obtain

θmk =

∑Nm

n=1 qmnk + αk − 1∑K
k′=1

∑Nm

j=1 qmnk′ + αk′ − 1
(28)

Note that
∑K
k′=1 qmnk′ = 1, we reach at the optimizer:

θmk =
1

Nm +
∑

(αk′ − 1)

(
Nm∑
n=1

qmnk + αk − 1

)
(29)

Maximizing φ Taking derivative with respect to φkv and setting it to 0, we obtain

∂L
∂φkv

= 0 =

M∑
m=1

Nm∑
n=1

qmnkδ(v − wmn) + βv − 1

φkv
− λk

λkφkv =

M∑
m=1

Nm∑
n=1

qmnkδ(v − wmn) + βv − 1

(30)

After solving for λk, we finally obtain

φkv =

∑M
m=1

∑Nm

n=1 qmnkδ(v − wmn) + βv − 1∑V
v′=1

∑M
m=1

∑Nm

n=1 δ(v
′ − wmn) + βv′ − 1

(31)

Note that
∑V
v′=1 δ(v

′ − wmn) = 1, we reach at the optimizer:

φkv =

∑M
m=1

∑Nm

n=1 qmnkδ(v − wmn) + βv − 1∑M
m=1

∑Nm

n=1 qmnk +
∑

(βv′ − 1)
(32)

B.3 Introducing Stochasticity

After performing the E-step, we add an extra simulation step, i.e. we draw and impute the values for
the latent variables from its distribution conditioned on data and current estimate of the parameters.
This means basically qmnk gets transformed into δ(zmn − k̃) where k̃ is value drawn from the
conditional distribution. Then we proceed to perform the M-step, which is even simpler now. To
summarize SEM for LDA will have following steps:

12

E-step in parallel compute the conditional distribution locally:

qmnk =
θmkφkwmn∑K
k′=1 θmk′φk′wij

(33)

S-step in parallel draw zmn from the categorical distribution:
zmn ∼ Categorical(qmn1, ..., qmnK) (34)

M-step in parallel compute the new parameter estimates:

θmk =
Dmk + αk − 1

Nm +
∑

(αk′ − 1)

φkv =
Wkv + βv − 1

Tk +
∑

(βv′ − 1)

(35)

where Dmk =
∣∣∣{ zmn | zmn = k

}∣∣∣,
Wkv =

∣∣∣{ zmn | wmn = v, zmn = k
}∣∣∣, and

Tk =
∣∣∣{ zmn | zmn = k

}∣∣∣ =
V∑
v=1

Wkv .

13

C Equivalency between (S)EM and (S)GD for LDA

We study the equivalency between (S)EM and (S)GD for LDA. The deterministic case (EM and GD)
has been studied for other models [23, 19]. We derive it for LDA here for completeness.

C.1 EM for LDA

EM for LDA can be summarized by follows:

E-Step

qmnk =
θmkφkwmn∑K

k′=1 θmk′φk′wmn

(36)

M-Step

θmk =
1

Nm +
∑

(αk′ − 1)

(
Nm∑
n=1

qmnk + αk − 1

)

φkv =

∑M
m=1

∑Nm

n=1 qmnkδ(v − wmn) + βv − 1∑M
m=1

∑Nm

n=1 qmnk +
∑

(βv′ − 1)

(37)

C.2 GD for LDA

The joint probability density can be expressed as:

p(W,Z, θ, φ|α, β) =

[
K∏
k=1

p(φk|β)

][
M∏
m=1

p(θm|α)

Nm∏
n=1

p(zmn|θm)p(wmn|φzmn
)

]

∝

[
K∏
k=1

V∏
v=1

φβ−1kv

][
M∏
m=1

(
K∏
k=1

θα−1mk

)
Nm∏
n=1

θmzmn
φzmnwmn

] (38)

The log-probability of joint model with Z marginalized can be written as:

log p(W, θ, φ|α, β) = log
∑
Z

p(W,Z, θ, φ|α, β)

=

M∑
m=1

Nm∑
n=1

log

K∑
k=1

p(zmn = k|θm)p(wmn|φk)

+

K∑
k=1

log p(φk|β) +

M∑
m=1

log p(θm|α)

=

M∑
m=1

Nm∑
n=1

log

K∑
k=1

θmkφkwmn

+

M∑
m=1

K∑
k=1

(αk − 1) log θmk +

K∑
k=1

V∑
v=1

(βv − 1) log φkv

(39)

Gradient for topic per document Now take derivative with respect to θmk:

∂ log p

∂θmk
=

Nm∑
j=1

φkwmn∑K
k′=1 θmk′φk′wmn

+
αk − 1

θmk

=
1

θmk

(
Nm∑
n=1

qmnk + αk − 1

) (40)

14

Gradient for word per topic Now take derivative with respect to φkv:

∂ log p

∂φkv
=

M∑
m=1

Nm∑
n=1

θmkδ(v − wmn)∑K
k′=1 θmk′φk′wmn

+
βv − 1

φkv

=
1

φkv

(
M∑
m=1

Nm∑
n=1

qmnkδ(v − wmn) + βv − 1

) (41)

C.3 Equivalency

If we look at one step of EM:

For topic per document

θ+mk =
1

Nm +
∑

(αk′ − 1)

(
Nm∑
n=1

qmnk + αk − 1

)

=
θmk

Nm +
∑

(αk′ − 1)

∂ log p

∂θmk

Vectorize and can be re-written as:

θ+m = θm +
1

Nm +
∑

(αk′ − 1)

[
diag(θm)− θmθTm

] ∂ log p

∂θm
(42)

For word per topic

φ+kv =

∑M
m=1

∑Nm

n=1 qmnkδ(v − wmn) + βv − 1∑M
m=1

∑Nm

n=1 qmnk +
∑

(βv′ − 1)

=
φkv∑M

m=1

∑Nm

n=1 qmnk +
∑

(βv′ − 1)

∂ log p

∂φkv

Vectorize and can be re-written as:

θ+m = θm +
1

Nm +
∑

(αk′ − 1)

[
diag(θm)− θmθTm

] ∂ log p

∂θm
(43)

C.4 SEM for LDA

We summarize our SEM derivation for LDA as follows:

E-Step

qmnk =
θmkφkwmn∑K

k′=1 θmk′φk′wmn

(44)

S-step

zmn ∼ Categorical(qmn1, ..., qmnK) (45)

M-step

θmk =
Dmk + αk − 1

Nm +
∑

(αk′ − 1)

φkv =
Wkv + βv − 1

Tk +
∑

(βv′ − 1)

(46)

15

C.5 Equivalency

In case of LDA, let us consider only θ for the purpose of illustration. Now consider the case of
stochastic EM, the update over one step is:

θ+ik =
nik
Ni

=
1

Ni

Ni∑
j=1

δ(zij = k)

Again vectorizing and re-writing as earlier:
θ+i = θi +Mg

where M = 1
Ni

[
diag(θi)− θiθTi

]
and g = 1

θik

∑Ni

j=1 δ(zij = k). The vector g can be shown to be
an unbiased noisy estimate of the gradient, i.e.

E[g] =
1

θik

Ni∑
j=1

E[δ(zij = k)]

=
1

θik

Ni∑
j=1

qijk =
∂ log p

∂θik

Thus, it is SGD with constraints. However, note that stochasticity does not arise from sub-sampling
data as usually in SGD, rather from the randomness introduced in the S-step.

16

D Convergence

We now address the critical question of how the invariant measure of ESCA for the model presented
in Section 2.1 is related to the true MAP estimates. First, note that SCA is ergodic [13], a result
that immediately applies if we ignore the deterministic components of our automata (corresponding
to the observations). Now that we have established ergodicity, we next study the properties of the
stationary distribution and find that the modes correspond to MAP estimates.

We make a few mild assumptions about the model:

• The observed data Fisher information is non-singular, i.e. I(η) � 0.
• For the Fisher information for z|x, we need it to be non-singular and central limit theorem, law

of large number to hold, i.e. Eη0 [IZ(η0)] � 0 and

sup
η

∣∣∣∣∣ 1n
n∑
i=1

Izi(η)− Eη0 [IX(η)]

∣∣∣∣∣→ 0 as n→∞

• We assume that 1
n

∑n
i=1∇η log p(xi; η) = 0 has at least one solution, let η̂ be a solution.

These assumptions are reasonable. For example in case of mixture models (or topic models), it just
means all component must be exhibited at least once and all components are unique. The details of
this case are worked out in Appendix E. Also when the number of parameters grow with the data,
e.g., for topic models, the second assumption still holds. In this case, we resort to corresponding
result from high dimensional statistics by replacing the law of large numbers with Donsker’s theorem
and everything else falls into place.

Consequently, we show ESCA converges weakly to a distribution with mean equal to some root of
the score function (∇η log p(xi; η)) and thus a MAP fixed point by borrowing the results known for
SEM [16]. In particular, we have:

Theorem 1 Let the assumptions stated above hold and η̃, is the estimate from ESCA. Then as the
number of i.i.d. data point goes to infinity, i.e. n→∞, we have

√
n(η̃ − η̂)

D→ N
(
0, I(η0)−1[I − F (η0)−1

)
(47)

where F (η0) = I + Eη0 [IX(η0)](I(η0) + Eη0 [IX(η0)]).

This result implies that SEM flocks around a stationary point under very reasonable assumptions
and tremendous computational benefits.

17

E Non-singularity of Fisher Information for Mixture Models

Let us consider a general mixture model:

p(x|θ, φ) =

K∑
k=1

θkf(x|φk) (48)

Then the log-likelihood can be written as:

log p(x|θ, φ) = log

(
K∑
k=1

θkf(x|φk)

)
(49)

The Fisher Information is given by:
I(θ, φ) = E

[
(∇ log p(x|θ, φ))(∇ log p(x|θ, φ))T

]
=

[
∂
∂θ log p(x|θ, φ)
∂
∂φ log p(x|θ, φ)

] [
∂
∂θ log p(x|θ, φ)
∂
∂φ log p(x|θ, φ)

]T
These derivatives can be computed as follows:

∂

∂θk
log p(x|θ, φ) =

∂

∂θk
log

(
(

K∑
k=1

θkf(x|φk)

)

=
f(x|φk)∑K

k′=1 θk′f(x|φk′)

∂

∂φk
log p(x|θ, φ) =

∂

∂φk
log

(
(

K∑
k=1

θkf(x|φk)

)

=
θk

∂
∂φk

f(x|φk)∑K
k′=1 θk′f(x|φk′)

(50)

For any u, v ∈ RK (with at least one nonzero), then the Fisher Information is positive definite as:

(uT vT)I

(
u
v

)
= (uT vT)E


 ∂

∂θ log
(∑K

k=1 θkf(X|φk)
)

∂
∂φ log

(∑K
k=1 θkf(X|φk)

)  ∂
∂θ log

(∑K
k=1 θkf(X|φk)

)
∂
∂φ log

(∑K
i=1 θkf(X|φk)

) T
(u

v

)

= E

(uT ∂

∂θ
log

(
K∑
k=1

θkf(X|φk)

)
+ vT

∂

∂θ
log

(
K∑
i=1

θkf(X|φi)

))2


= E

(∑K
k=1 ukf(X|φk) + vkθk

∂
∂φk

f(X|φk)∑K
k=1 θkf(X|φk)

)2


This can be 0 if and only if
K∑
k=1

ukf(x|φi) + vkθk
∂

∂φk
f(x;φk) = 0 ∀x. (51)

In case of exponential family emission models this cannot hold if all components are unique and all
θk > 0. Thus, if we assume all components are unique and every component has been observed at
least once, the Fisher information matrix becomes non-singular.

18

F Alias Sampling Method

The alias sampling method is an efficient method for drawing samples from a K outcome discrete
distribution in O(1) amortized time and we describe it here for completeness. Denote by pi for
i ∈ {1 . . .K} the probabilities of a distribution over K outcomes from which we would like to
sample. If p were the uniform distribution, i.e. pi = K−1, then sampling would be trivial. For the
general case, we must pre-process the distribution p into a table of K triples of the form (i, j, πi) as
follows:

• Partition the indices {1 . . .K} into sets U and L where pi > K−1 for i ∈ U and pi ≤ K−1 for
i ∈ L.

• Remove any i from L and j from U and add (i, j, pi) to the table.
• Update pj = pi + pj −K−1 and if pj > K−1 then add j to U , else to L.

By construction the algorithm terminates after K steps; moreover, all probability mass is preserved
either in the form of πi associated with i or in the form of K−1 − πi associated with j. Hence,
sampling from p can now be accomplished in constant time:

• Draw (i, j, πi) uniformly from the set of k triples in K.
• With probability Kπi emit i, else emit j.

Hence, if we need to draw from p at leastK times, sampling can be accomplished in amortizedO(1)
time.

19

G Applicability of ESCA

We begin with a simple Gaussian mixture model (GMM) with K components. Let x1, ..., xn
be i.i.d. observations, z1, ..., zn be hidden component assignment variable and η =
η(θ1, ..., θK , µ1,Σ1, µ2,Σ2, ..., µK ,ΣK) be the parameters. Then the GMM fits into ESCA with
sufficient statistics given by:

T (xi, zi) = [1{zi = 1}, ...,1{zi = K},
xi1{zi = 1}, ..., xi1{zi = K},
xix

T
i 1{zi = 1}, ..., xixTi 1{zi = K}].

(52)

The conditional distribution for the E-step is:
p(zi = k|xi; η) ∝ θkN (xi|µk,Σk) (53)

In the S-step we draw from this conditional distribution and the M-step, through inversion of link
function, is:

θ̃k =
1

n+Kα−K

n∑
i=1

(1{zi = k}+ α− 1)

µ̃k =
κ0µ0 +

∑n
i=1 xi1{zi = k}

κ0 +
∑n
i=1 1{zi = k}

Σ̃k =
Ψ0 + κ0µ0µ

T
0 +

∑n
i=1 xix

T
i 1{zi = k} − (κ0 +

∑n
i=1 1{zi = k})µ̃kµ̃Tk

ν0 + d+ 2 +
∑n
i=1 1{zi = k}

(54)

and is only function of the sufficient statistics.

Next, we provide more details on how to employ ESCA for any conditional exponential family
mixture model; i.e., in which n random variables xi, i = 1, . . . , n correspond to observations,
each distributed according to a mixture of K components, with each component belonging to the
same exponential family of distributions (e.g., all normal, all multinomial, etc.), but with different
parameters:

p(xi|φ) = exp(〈ψ(xi), φ〉 − g(φ)). (55)

The model also has n latent variables zi that specify the identity of the mixture component of each
observation xi, each distributed according to a K-dimensional categorical distribution. A set of
K mixture weights θk, k = 1, . . . ,K, each of which is a probability (a real number between 0
and 1 inclusive) and collectively sum to one. A Dirichlet prior on the mixture weights with hyper-
parameters α. A set of K parameters φk, k = 1, . . . ,K, each specifying the parameter of the
corresponding mixture component. For example, observations distributed according to a mixture
of one-dimensional Gaussian distributions will have a mean and variance for each component. Ob-
servations distributed according to a mixture of V-dimensional categorical distributions (e.g., when
each observation is a word from a vocabulary of size V) will have a vector of V probabilities,
collectively summing to 1. Moreover, we put a shared conjugate prior on these parameters:

p(φ;n0, ψ0) = exp (〈ψ0, φ〉 − n0g(φ)− h(m0, ψ0)) . (56)

Then joint sufficient statistics would be given by:
T (zi, xi) = [1{zi = 1}, ...,1{zi = K},

ψ(xi)1{zi = 1}, ..., ψ(xi)1{zi = K}] (57)

In the E-step of tth iteration, we derive the conditional distribution p(zi|xi, η), namely

p(zi = k|xi, η) ∝ p(xi|φt−1k , zi = k)p(zi = k|θt−1)

=
θt−1k p(xi|φt−1k)∑
k′ θ

t−1
k′ p(xi|φt−1k′)

(58)

20

Table 3: Examples of some popular models to which ESCA is applicable.
mix. component/emitter Bernoulli Multinomial Gaussian Poisson
Categorical Latent Class Unigram Document Mixture of

Model [6] Clustering Gaussians [15]
Dirichlet Mixture Grade of Membership Latent Dirichlet Gaussian-LDA [4] GaP Model [2]

Model [22] Allocation [1]

In the S-step we draw zti from this conditional distribution and the M-step through inversion of the
link function yields:

∇g(φ̃k) =
φ0 +

∑
i ψ(xi)1{zi = k})

n0 +
∑
i 1{zi = k}

or φ̃k = ξ−1
(
ψ0 +

∑
i ψ(xi)1{zi = k}

n0 +
∑
i 1{zi = k}

)
θ̃k =

∑
i 1{zi = k}+ αk − 1

n+
∑
k αk − k

.

(59)

This encompasses most of the popular mixture models (and with slight more work all the mixed
membership or admixture models) with Binomial, multinomial, or Gaussian emission model, e.g.
beta-binomials for identification, Dirichlet-multinomial for text or Gauss-Wishart for images as
listed in Table 3.

Note further, ESCA is applicable to models such as restricted Boltzmann machines (RBMs) as well
which are also in the exponential family. For example, if the data were a collection of images, each
cell could independently compute the S-step for its respective image. For RBMs the cell would flip
a biased coin for each latent variable, and for deep Boltzmann machines, the cells could perform
Gibbs sampling.

To elabortate, consider 2-layer RBM (1 observed, 1 latent), then ESCA should work as it is. That
is, we sample latent variables conditioned on data and weights. Then optimize weights, given latent
variables and observed data. Now if we have deep RBM, i.e. one with many hidden layers. Then
ESCA will have similar problem as Ising model. But there is a quick fix borrowing ideas from
chromatic samplers.

for each iteration

1. Sample all odd layers of the RBM
2. Optimize for weights
3. Sample all even layers of the RBM
4. Optimize for weights

end for

We save a precise derivation and empirical evaluation for future work.

21

H More experimental results

In addition to the experiments reported in main paper, we perform another set of experiments. As
before, to evaluate the strength and weaknesses of our algorithm, we compare against parallel and
distributed implementations of CGS and CVB0.

Software & hardware All three algorithms were first implemented in the Java programming
language. (We later switched to C++ for achieving better performance and those results are reported
in the main paper.) To achieve good performance in the Java programming language, we use only
arrays of primitive types and pre-allocate all of the necessary structures before the learning starts. We
implement multithreaded parallelization within a node using the work-stealing Fork/Join framework,
and the distribution across multiple nodes using the Java binding to OpenMPI. We also implemented
a version of SCA with a sparse representation for the array D of counts of topics per documents and
Vose’s alias method to draw from discrete distributions. We run our experiments on a small cluster
of 16 nodes connected through 10Gb/s Ethernet. Each node has two 8-core Intel Xeon E5 processors
(some nodes have Ivy Bridge processors while others have Sandy Bridge processors) for a total of
32 hardware threads per node and 256GB of memory.

Datasets We experiment on two datasets, both of which are cleaned by removing stop words and
rare words: Reuters RCV1 and English Wikipedia. Our Reuters dataset is composed of 806,791
documents comprising 105,989,213 tokens with a vocabulary of 43,962 vocabulary words. Our
Wikipedia dataset is composed of 6,749,797 documents comprising 6,749,797 tokens with a vocab-
ulary of 291,561 words. (Note this Wikipedia dump was collected at a different time than the main
paper, hence different numbers.) We also apply the SCA algorithm to a third larger dataset com-
posed of more than 3 billion documents comprising more than 171 billion tokens with a vocabulary
of about 140,000 words.

Protocol We use perplexity on held-out documents to compare the algorithms. When compar-
ing algorithms trained on Wikipedia, we compute the perplexity of 10,000 Reuters documents.
Vice versa, when comparing algorithms trained on Reuters, we compute the perplexity of 10,000
Wikipedia documents. We run four sets of experiment on each dataset: (1) how perplexity evolves
for some numbers of training iterations (100 topics); (2) how perplexity evolves over time (100
topics); (3) perplexity as a function of the number of topics (75 iterations); and (4) perplexity as a
function of the value of β (100 topics, 75 iterations). With the exception of the second experiment,
we ran all experiments five times with five different seeds, and report the mean and standard devi-
ation of these runs. The results are presented in Figure 6. We also ran an experiment to compare
vanilla SCA and its improved version that uses a sparse representation and Vose’s alias method for
discrete sampling. The results are presented in Figure 5.

●●●●●●●●
●
●
●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●●

5000

7500

10000

12500

15000

0 5 10 15 20
Minutes

P
er

pl
ex

ity

Algorithm
● Sparse + Alias SCA

Vanilla SCA

(a) Wikipedia, K = 200, α = 0.1, β = 0.1

●●●●●●●●●●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●
●
●
●
●●

7500

10000

12500

15000

0 10 20 30 40
Minutes

P
er

pl
ex

ity

Algorithm
● Sparse + Alias SCA

Vanilla SCA

(b) Wikipedia, K = 500, α = 0.1, β = 0.1

Figure 5: Evolution of perplexity over time for plain SCA and a sparse one using the alias method.

22

●●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

8000

10000

12000

14000

0 20 40 60
Iterations

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(a) Reuters, K = 100, α = 0.1, β = 0.1

●●●●●●●●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

8000

10000

12000

14000

16000

0 20 40 60
Iterations

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(b) Wikipedia, K = 100, α = 0.1, β = 0.1

●●●●●
●
●

●

●

●

●

●

●

●

●

●
●
●
●
●
●●

7500

10000

12500

15000

0 2 4
Minutes

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(c) Reuters, K = 100, α = 0.1, β = 0.1

● ● ● ● ● ● ● ●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●7500

10000

12500

15000

0 10 20 30
Minutes

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(d) Wikipedia, K = 100, α = 0.1, β = 0.1

●

●

●

●
●

6500

7000

7500

100 200 300 400 500
Topics

P
er

pl
ex

ity Algorithm
● CGS

CVB0
SCA

(e) Reuters, α = 0.1, β = 0.1

●

●

●
●

●

6500

7000

7500

100 200 300 400 500
Topics

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(f) Wikipedia, α = 0.1, β = 0.1

●

●

● ●
●

7000

7500

8000

8500

0.0 0.1 0.2
Beta

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(g) Reuters, K = 100, α = 0.1

●

●

●
●

●

7000

7500

0.0 0.1 0.2
Beta

P
er

pl
ex

ity

Algorithm
● CGS

CVB0
SCA

(h) Wikipedia, K = 100, α = 0.1

Figure 6: Evolution of perplexity on Wikipedia and Reuters over number of iterations, time, number
of topics, value of β. Here SCA does not use alias method or sparsity and hence slower.

23

Topics

Here are the first five topics inferred via ESCA on LDA from both PubMed and Wikipedia:

PubMed
Topic 0 Topic 1 Topic 2 Topic 3 Topic 4
seizures data local gene state
epilepsy information block transcript change
seizure available lidocaine exon transition
epileptic provide anethesia genes states
temporal lobe regarding anethetic expression occur
anticonvulsant sources acupuncture region process
convulsion literature bupivacaine mrna shift
kindling concerning anaesthesia mouse condition
partial limited under expressed changed
generalized provided anaesthetic human dynamic

Wikipedia
Topic 0 Topic 1 Topic 2 Topic 3 Topic 4
hockey medical von boy music
ice medicine german youth music
league hospital karl boys pop
played physician carl camp music
junior doctor friedrich girl artists
nhl clinical wilhelm scout electronic
professional md johann girls duo
games physicians ludwig guide genre
playing doctors prussian scouts genres
national surgeon heinrich scouting musicians

24

	Introduction
	Exponential SCA
	Latent Variable Exponential Family
	Stochastic EM
	ESCA for Latent Variable Models

	ESCA for LDA
	Experiments
	(Stochastic) EM in General
	(S)EM Derivation for LDA
	LDA Model
	Expectation Maximization
	E-Step
	M-Step

	Introducing Stochasticity

	Equivalency between (S)EM and (S)GD for LDA
	EM for LDA
	GD for LDA
	Equivalency
	SEM for LDA
	Equivalency

	Convergence
	Non-singularity of Fisher Information for Mixture Models
	Alias Sampling Method
	Applicability of ESCA
	More experimental results

