
Comparing Gibbs, EM and SEM for MAP Inference
in Mixture Models

Manzil Zaheer
Carnegie Mellon University

manzil@cmu.edu

Micheal Wick
Oracle Labs

michael.wick@oracle.com

Satwik Kottur
Carnegie Mellon University

skottur@andrew.cmu.edu

Jean-Baptiste Tristan
Oracle Labs

jean.baptiste.tristan@oracle.com

Abstract
Classic inference algorithms such as Gibbs sampling and EM often perform well
in practice, but selecting between them when scaling a model to large datasets is
difficult. In particular, Gibbs sampling is easy to distribute, but difficult to par-
allelize, while EM is easy parallelize, but difficult to distribute. Remarkably, the
relatively obscure stochastic EM (SEM) combines the computational strengths of
the two methods, without inheriting any of their weaknesses. Indeed, we highlight
these strengths by deriving the three algorithms on a simple, yet representative (of
the general class) mixture model. We also demonstrate empirically that the MAP
solutions found by the three algorithms are comparable across a wide variety of
parameter settings; further, SEM appears more robust to poor initialization.

1 Introduction

Latent variable Bayesian mixture models such as Gaussian mixtures and latent Dirichlet allo-
cation are important for a wide variety of problems, including clustering and text understand-
ing/summarization [4, 2, 1]. Inference in these models is difficult and many existing algorithms are
based upon Markov chain Monte Carlo (MCMC) [7], expectation maximization (EM) [3], among
others [5, 8]. In practice, it is often difficult to determine which inference algorithm will work best
since this depends largely on the task, the data, and the model. Therefore, we must often turn to
empirical studies to help understand their strengths and weaknesses.

Furthermore, for latent variable mixture models, Gibbs and EM possess remarkably different com-
putational properties. For example, collapsed Gibbs sampling is sequential and difficult to paral-
lelize, but has a relatively small memory footprint and is easy to distribute because we only need
to communicate imputed values. In contrast, EM is easy to parallelize, but difficult to distribute
because the dense conditional puts tremendous pressure on communication bandwidth and memory.
However, the two algorithms have complementary strengths.

We observe that a relatively esoteric algorithm, stochastic EM (SEM), has the potential to combine
the strengths of Gibbs and EM. In particular, SEM replaces the full expectation from the E-step with
a sample from it, enabling the subsequent maximization step to operate only on the imputed data
and current sufficient statistics. As a result, SEM substantially reduces memory and communication
costs (even more than the Gibbs sampler which must also store the latent variables). Furthermore,
since SEM is based on EM, it is embarassingly parallel. From a scalable systems perspective SEM
has clear computational advantages, but does SEM find good quality solutions to the MAP inference
optimization problem in practice?

In this paper, we derive Gibbs, EM, and SEM for a somewhat general and representitive class of
latent variable Bayesian mixture models. More importantly, we derive the algorithms for a special
instance of the class that highlights the computational advantages of SEM over the other two al-
gorithms. Empirically, we study the performance of these algorithms and find that SEM performs

1

equally (if not better) than EM and Gibbs across many experimental conditions. Further, we find
that SEM may be more robust to poor initialization conditions than either the Gibbs sampler or EM.

2 MAP Inference for Mixture Models

A typical example of a mixture model is the Gaussian mixture in which each data point is assumed to
be drawn from one of several Gaussian distributions. Assuming that the variance of these Gaussian
distributions is known, the goal is to infer the Gaussian means µ and mixing coefficient π from the
data. The membership of a data point to one of the Gaussian distributions is modeled using a latent
variable that identifies the appropriate Gaussian. To avoid overfitting, we equip the parameters we
wish to infer with priors and perform maximum a posteriori (MAP) inference, which is an optimiza-
tion problem in which we seek a setting to the parameters that maximizes the marginal probability
of the data. This gives us the following model:

π ∼ Dirichlet(α)

zi ∼ Cat(π)

µk ∼ N (µo, τ0)

xi ∼ N (µzi , τ1)

Note there are many ways to extend and modify such a model; the class of mixture models is fairly
rich. For example, we could use a different prior for the mean, although we often restrict the choice
of priors to ensure conjugacy. The data could be drawn from a different distribution. The data itself
could have more structure, for instance, the data points could belong to different sets (or documents),
each of which with its own mixing coefficients. The latent variables may be selected using another
layer of latent variable as in Pachinko allocation [6]. In general, if we choose distributions in the
exponential family and ensure conjugacy, it is reasonable to expect the algorithms we present in this
paper to work. A well-known example of a mixture model that has more structure than GMM is
LDA, which performs topic modeling. It is a discrete data model, where the data points belong to
different sets (documents) each with its own mixing coefficient. Appendix D has details of LDA.

3 Gibbs, EM, and SEM on a Simple Example

In this section we present a pedagogical example that highlights the computational differences be-
tween the three algorithms (Gibbs, EM, SEM). We choose an example that is both simple and rep-
resentative of the general class. Simplicity is important because it makes it much easier to see the
computational differences. In particular, we choose a mixture of 1-dimensional Gaussians in which
the mixing coefficient π0 is known, the precision τ of each Gaussian is known, its priors (µ0, κ0τ)
are known, and inference must infer the means of the Gaussians µ. That is each datum xi has an
associated latent variable zi that determines the Gaussian from which it is drawn. The sufficient
statistics comprise just a single array of size K (one element per component). More formally, we
have the following generative model:

µk ∼ N (µ0, κ0τ)

zi ∼ Categorical(π0)

xi ∼ N (µzi , τ)

We present the three algorithms in Algorithm 1,2,3. First, note that all three algorithms must store
the data in an array x of size n. In addition to x, the Gibbs sampler requires storing the latent
variables in an array z and parameters µ of size (n and k respectively). EM requires substantially
more memory since an implementation must have four arrays x, µ, v, w of size n, k, n × k, k
respectively. Finally, note that SEM has by far the smallest memory requirement since its four
arrays x, µ, tmp, w are of size n, k, k, k.

2

Algorithm 1 Collapsed Gibbs Sampler (CGS)
initialize z randomly and accordingly µ and n
for each iteration t = 1 . . . T do

for each data point i = 1 . . . N do
j = zi
µj− = xi
nj− = 1
for each component k = 1 . . .K do
p[k] = πk ×N

(
xi|κ0µ0+µk

κ0+nk
, τ κ0+nk

κ0+nk+1

)
end for
sample j from p
nj+ = 1
µj+ = xi
zi = j

end for
end for
for each component k = 1 . . .K do
µk = κ0µ0+µk

κ0+nk
end for

Algorithm 2 EM
initialize z randomly and accordingly µ and n
for each iteration i = 1 . . . T do

for each data point i = 1 . . . N (E-step) do
for each component k = 1 . . .K do
qik = πk×N (xi|µk,τ)∑′

k
πk×N (xi|µk′ ,τ)

nk+ = qik
end for

end for
clear all µ to κ0µ0

for each data point i = 1 . . . N (M-step) do
for each component k = 1 . . .K do
µk+ = qik × xi

end for
end for
for each component k = 1 . . .K do
µk = µk/(κ0 + nk)

end for
end for

Algorithm 3 SEM
initialize z randomly and accordingly µ and n
for each iteration i = 1 . . . T (SE-step) do

clear tmp
for each data point i = 1 . . . N do

for each component k = 1 . . .K do
p[k] = πk ×N (xi|µk, τ)

end for
sample k from p
tmpk+ = xi
nk+ = 1

end for
for each component k = 1 . . .K (M-step) do
µk =

κ0µ0+tmpk
κ0+nk

end for
end for

4 Experiments

For the simple example in the previous section, we take K = 10 clusters and n = 100, 000 training
examples generated synthetically to remove any error caused by an incorrect model choice

µ0 = 0 κ0 = 0.1

τ = 1 π ∼ Dirichlet(1).

We compare Gibbs, EM and SEM (T = 50 iterations) under several experimental conditions. Fur-
ther, we include an ad-hoc method in which the first 15 iterations are EM and then the rest are
collapsed Gibbs sampling (EM+Gibbs). We repeat each condition 10 times using random initial-
ization and report the average log-likelihood on a held-out test set of 1000 instances. First, as a
control, in Figure 1a we run all three algorithms on a simple one-dimensional model. As expected,
they perform equally well. Next, we study the robustness of each algorithm to initialization in a
two-dimensional model. For this, we choose two extreme initialization conditions under which the
algorithms are likely to get stuck in poor local optima. In the first case we initialize to a low entropy
configuration (Figure 1b), and the second case a high entropy configuration (Figure 1c). The former
causes trouble for EM because it is deterministic; in contrast, the stochasticity in Gibbs and SEM
allow them to be robust to this condition. The latter causes trouble for Gibbs because the conditional
distribution has high entropy forcing the sampler to rely on sheer luck in the early iterations. In
summary, we find SEM is more robust than either algorithm since it works well in both extremes.

3

Iterations
0 10 20 30 40 50 60

Lo
g-

Li
ke

lih
oo

d

-4.4

-4.2

-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

Truth
EM
SEM
Gibbs
EM+Gibbs

(a) Simple 1D case (b) Initialization to single com-
ponent

(c) Uniformly random initializa-
tion

Figure 1: Simple Cases

We also compare the algorithms on the more general problem of estimating both π and µ under a
variety of experimental conditions by varying: the number of training instances Ntrain, number of
clusters Nk, and dimensionality of the training instances Nd. For each condition we evaluate on a
common test set with Ntest = 1000 instances. More precisely, our experimental conditions include:

• Vary number of mixture components: For each run, we select NK ∈ {10, 20, 40, 80, 160, 320},
keeping the other parameters fixed i.e. (NK , Ntest) = (10, 1000). However, we vary the number
of training points to make Ntrain

NK
to be a constant. Hence, we take Ntrain = 100 ∗NK .

• Vary number of Dimensions: For each run, we select Nd ∈ {1, 2, 4, 8, 16}, keeping the other
parameters fixed i.e. (NK , Ntest) = (10, 1000). However, we vary the number of training points
to make Ntrain

ND
to be a constant. Hence, we take Ntrain = 1k ∗ND.

• Vary number of training examples:For each run, we select Ntrain ∈ {1k, 2k, 4k, 8k, 16k, 32k},
keeping the other parameters fixed i.e. (Nd, NK , Ntest) = (2, 10, 1000).

We run the three experiments each using the collapsed Gibbs sampler, EM and SEM, each for
T = 50 iterations. Further, we try an ad-hoc method where first 15 iterations carried out using EM
and then we start using collapsed Gibbs sampling. We repeat the experiments 10 times using various
random initializations. The log-likelihood (mean and std-error thereof) on a held-out test set of size
1, 000 at the end of 50 iterations is depicted in Figure 2. We find that SEM consistently outperforms
all other.

Data Size
103 104 105

Lo
g-

Li
ke

lih
oo

d
re

la
tiv

e
to

 G
ib

bs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

EM
SEM
Gibbs
EM+Gibbs

Dimension
1 2 3 4 5 6 7 8

Lo
g-

Li
ke

lih
oo

d
re

la
tiv

e
to

 G
ib

bs

-4

-3

-2

-1

0

1

2

3

4

EM
SEM
Gibbs
EM+Gibbs

Cluster Size
101 102 103

Lo
g-

Li
ke

lih
oo

d
re

la
tiv

e
to

 G
ib

bs

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

EM
SEM
Gibbs
EM+Gibbs

Figure 2: Varying parameters

5 Conclusion

We compared classic inference algorithms on a few mixture models and found that their perfor-
mance to be comparable, even as the number of components, data size, and dimensions vary. This is
especially encouraging because from a computational perspective, SEM is an ideal inference algo-
rithm for mixture models with latent variables. It combines the strengths of EM and Gibbs sampling
making it easy to parallelize and distribute. Therefore, we recommend practitioners consider SEM
as a foundation upon which to build the next generation of scalable inference algorithms.

4

References
[1] A. Ahmed, L. Hong, and A.J. Smola. Nested chinese restaurant franchise processes: Applica-

tions to user tracking and document modeling. In ICML, Atlanta, GA, 2013.
[2] Amr Ahmed, Moahmed Aly, Joseph Gonzalez, Shravan Narayanamurthy, and Alexander J

Smola. Scalable inference in latent variable models. In Proceedings of the fifth ACM inter-
national conference on Web search and data mining, pages 123–132. ACM, 2012.

[3] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from incomplete
data via the em algorithm. Journal of the royal statistical society. Series B (methodological),
pages 1–38, 1977.

[4] Nan Du, Mehrdad Farajtabar, Amr Ahmed, Alexander J Smola, and Le Song. Dirichlet-hawkes
processes with applications to clustering continuous-time document streams. In KDD. ACM,
2015.

[5] Michael I. Jordan, Zoubin Ghahramani, Tommi S. Jaakkola, and Lawrence K. Saul. An intro-
duction to variational methods for graphical models. Mach. Learn., 37(2):183–233, November
1999.

[6] Wei Li and Andrew McCallum. Pachinko allocation: Scalable mixture models of topic correla-
tions. J. of Machine Learning Research. Submitted, 2008.

[7] Radford M Neal. Probabilistic inference using markov chain monte carlo methods. 1993.
[8] Radford M Neal. Mcmc using hamiltonian dynamics. Handbook of Markov Chain Monte Carlo,

2, 2011.

5

A (Stochastic) EM in General

Expectation-Maximization (EM) is an iterative method for finding the maximum likelihood or
maximum a posteriori (MAP) estimates of the parameters in statistical models when data is only
partially, or when model depends on unobserved latent variables. This section is inspired from
http://www.ece.iastate.edu/∼namrata/EE527 Spring08/emlecture.pdf

We derive EM algorithm for a very general class of model. Let us define all the quantities of interest.

Table 1: Notation

Symbol Meaning
x Observed data
z Unobserved data

(x, z) Complete data
fX;η(x; η) marginal observed data density
fZ;η(z; η) marginal unobserved data density

fX,Z;η(x, z; η) complete data density/likelihood
fZ|X;η(z|x; η) conditional unobserved-data (missing-data) density.

Objective: To maximize the marginal log-likelihood or posterior, i.e.
L(η) = log fX;η(x; η). (1)

Assumptions:

1. zi are independent given η. So

fZ;η(z; η) =

N∏
i=1

fZi;η(zi; η), (2)

2. xi are independent given missing data zi and η. So

fX,Z;η(x, z; η) =

N∏
i=1

fXi,Zi;η(xi, zi; η). (3)

As a consequence we obtain:

fZ|X;η(z|x; η) =

N∏
i=1

fZi|Xi;η(zi|xi; η), (4)

Now,
L(η) = log fX;η(x; η) = log fX,Z;η(x, z; η)− log fZ|X;η(z|x; η) (5)

or, summing across observations,

L(η) =

N∑
i=1

log fXi;η(xi; η) =

N∑
i=1

log fXi,Zi;η(xi, zi; η)−
N∑
i=1

log fZi|Xi;η(zi|xi; η). (6)

Let us take the expectation of the above expression with respect to fZi|Xi;η(zi|xi; ηp), where we
choose η = ηp:

N∑
i=1

EZi|Xi;η [log fXi;η(xi; η)|xi; ηp]

=

N∑
i=1

EZi|Xi;η [log fXi,Zi;η(xi, zi; η)|xi; ηp]−
N∑
i=1

EZi|Xi;η
[
log fZi|Xi;η(zi|xi; η)|xi; ηp

]
(7)

6

SinceL(η) = log fX;η(x; η) does not depend on z, it is invariant for this expectation. So we recover:

L(η) =

N∑
i=1

EZi|Xi;η [log fXi,Zi;η(xi, zi; η)|xi; ηp]−
N∑
i=1

EZi|Xi;η
[
log fZi|Xi;η(zi|xi; η)|xi; ηp

]
= Q(η|ηp)−H(η|ηp).

(8)
Now, (8) may be written as

Q(η|ηp) = L(η) + H(η|ηp)︸ ︷︷ ︸
≤H(ηp|ηp)

(9)

Here, observe that H(η|ηp) is maximized (with respect to η) by η = ηp, i.e.
H(η|ηp) ≤ H(ηp|ηp) (10)

Simple proof using Jensen’s inequality.

As our objective is to maximize L(η) with respect to η, if we maximize Q(η|ηp) with respect to η,
it will force L(η) to increase. This is what is done repetitively in EM. To summarize, we have:

E-step : Compute fZi|Xi;η(zi|xi; ηp) using current estimate of η = ηp.

M-step : Maximize Q(η|ηp) to obtain next estimate ηp+1.

Now assume that the complete data likelihood belongs to the exponential family, i.e.
fXi,Zi;η(xi, zi; η) = exp{T{zi · xi}η − g(η)} (11)

then

Q(η|ηp) =

N∑
i=1

EZi|Xi;η [log fXi,Zi;η(xi, zi; η)|xi; ηp]

=

N∑
i=1

EZi|Xi;η [T{zi, ·, xi}ηg(η)|xi; ηp]

(12)

To find the maximizer, differentiate and set it to zero:
1

N

∑
i

EZi|Xi;η [{Tzi, xi}η|xi; ηp] =
dg(η)

dη
(13)

and one can obtain the maximizer by solving this equation.

Stochastic EM (SEM) introduces an additional simulation after the E-step that replaces the full
distribution with a single sample:

S-step Sample zi ∼ fZi|Xi;η(zi|xi; ηp)

(a) Same initialization (b) Bad initialization for SEM

Figure 3: Performance of SEM

7

This essentially means we replace E[·] with an empirical estimate. Thus, instead of solving (13), we
simply have:

1

N

∑
i

T (zi, xi) =
dg(η)

dη
. (14)

Computing and solving this system of equations is considerably easier than (13).

Now to demonstrate that SEM is well behaved and works in practice, we run a small experi-
ment. Consider the problem of estimating the parameters of a Gaussian mixture. We choose a
2-dimensional Gaussian with K = 30 clusters and 100,000 training points and 1,000 test points.
We run EM and SEM with the following initialization:

• Both SEM and EM are provided the same initialization.
• SEM is deliberately provided a bad initialization, while EM is not.

The log-likelihood on the heldout test set is shown in Figure 3.

8

B (S)EM Derivation for GMM

Endless flow of equations The EM iteration alternates between performing an expectation (E) step,
which creates a function for the expectation of the log-likelihood (`) evaluated using the current
estimate for the parameters (initially, random values), and a maximization (M) step, which computes
parameters maximizing the expected log-likelihood found on the E step. These parameter-estimates
are then used to determine the distribution of the latent variables in the next E step.

We are in a Bayesian world, so parameters are treated as Random Variables:

log p(X, θ, π|m0, φ0, α) = log
∑
Z

p(X,Z, θ, π|m0, φ0, α)

= log
∑
Z

p(X,Z|θ, π) +
∑
k

log p(θk|m0, φ0) + log p(π|α)

=
∑
i

log
∑
k

p(xi, zi = k|θ, π) +
∑
k

log p(θk|m0, φ0) + log p(π|α)

=
∑
i

log
∑
k

q(zi = k|xi)
q(zi = k|xi)

p(xi, zi = k|θ, π) +
∑
k

log p(θk|m0, φ0) + log p(π|α)

=
∑
i

log
∑
k

q(zi = k|xi)
p(xi, zi = k|θ, π)

q(zi = k|xi)
+
∑
k

log p(θk|m0, φ0) + log p(π|α)

≥
∑
i

∑
k

q(zi = k|xi) log
p(xi, zi = k|θ, π)

q(zi = k|xi)
+
∑
k

log p(θk|m0, φ0) + log p(π|α)

(15)

Let’s denote

F (q, θ, π) =
∑
i

∑
k

q(zi = k|xi) log
p(xi, zi = k|θ, π)

q(zi = k|xi)
+
∑
k

log p(θk|m0, φ0) + p(π|α)

EM algorithm (in coordinate descent manner) works as follows:

• In E-step, fix θ and π, maximize F over q. On re-arranging one could get:

F (q, θ, π) = −
∑
i

DKL(q(zi|xi)||P (zi|xi, θ, π))+logP (xi|θ, π)+
∑
k

log p(θk|m0, φ0)+p(π|α)

DKL denotes the Kullback Leibler divergence, a measure of the divergence of two distributions,
which is defined as DKL(P ||Q) =

∑
i P (i) ln P (i)

Q(i) . Since in E-step, θ and π are fixed, F (q, θ, π) is
maximized only by q that maximizes the negative KL divergence. Because KL divergence is always
non-negative. DKL = 0 happens only when p and q are the same.

Summary: In the E-step of tth iteration, we derive q(t) = argmaxq F (q, θ(t−1), π(t−1)), namely

nik = Eq|x[zi = k] = q(t)(zi = k|xi) = p(zi = k|xi; θ(t−1), πt−1)

∝ p(xi|θt−1
k , zi = k)p(zi = k|πt−1)

=
πt−1
k p(xi|θt−1

k)∑
k′ π

t−1
k′ p(xi|θ

t−1
k′)

(16)

• In M-step, fix q, maximize F over θ and π.

We begin by maximizing over θ, in which case we can drop other terms:

F (q, θ, π) =
∑
i

∑
k

q(zi = k|xi) log p(xi, zi = k|θ, π) +
∑
k

log p(θk|m0, φ0) + const

=
∑
i

∑
k

q(zi = k|xi)(〈φ(xi), θk〉 − g(θk)) +
∑
k

(〈φ0, θk〉 −m0g(θk) + const
(17)

9

Taking derivative with respect to θk and setting it to 0 yields

∇g(θ̂k) =
1

m0 +
∑
k q(zi = k|xi)

(
φ0 +

∑
i

q(zi = k|xi)φ(xi)

)

θ̂k = η−1

(
1

m0 +
∑
k q(zi = k|xi)

(
φ0 +

∑
i

q(zi = k|xi)φ(xi)

)) (18)

Similarly solving for π, we first summarize the equation with the terms related to πk as follwoing:

F (q, θ, π) =
∑
i

∑
k

q(zi = k|xi) log p(xi, zi = k|θ, π) +
∑
k

log p(θk|m0, φ0) + log p(π|α)

F (q, θ, π) =
∑
i

∑
k

q(zi = k|xi) log πk +
∑
k

(αk − 1) log πk + const

(19)

Now solving over πk leads to solving the following optimization function,

π̂ = argmax
π

∑
i

∑
k

q(zi = k|xi) log πk +
∑
k

(αk − 1) log πk

s.t.
K∑
k=1

πk = 1.

(20)

Writing the lagrangian function for the given optimization function,

L(π, λ) =
∑
i

∑
k

q(zi = k|xi) log πk +
∑
k

(αk − 1) log πk + λ(1−
K∑
k=1

πk) (21)

Now, setting the gradient with respect to πk gives us

0 =
1

π̂k

∑
i

[q(zi = k|xi) + (αk − 1)] + λ

⇔ π̂k =

∑
i q(zi = k|xi) + (αk − 1)

λ

(22)

Since q(zi = k|xi) + (αk− 1) ≥ 0 and πk have to sum up to 1, solving for λ, and thereby obtaining
the solution for πk as

π̂k =

∑
i q(zi = k|xi) + αk − 1∑

i,k q(zi = k|xi) +
∑
k αk − k

=

∑
i q(zi = k|xi) + αk − 1

N +
∑
k αk −K

.

(23)

The distribution of Multivariate Normal N (µ,Σ) is given by

p(x|µ,Σ) =
1√

(2π)d|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
(24)

where µ ∈ Rd and Σ � 0 is a symmetric positive definite d× d matrix.

The conjugate prior for Multivariate Normal Distribution can be parametrized as the Normal Inverse
Wishart Distribution NIW(µ0, κ0,Σ0, ν0). The distribution is given by:

p(µ,Σ; µ0, κ0,Σ0, ν0) = N (µ|µ0,Σ/κ0)W−1(Σ|Σ0, ν0)

=
κ
d
2
0 |Σ0|

ν0
2 |Σ|−

ν0+d+2
2

2
(ν0+1)d

2 π
d
2 Γd(

ν0
2)

e−
κ0
2 (µ−µ0)TΣ−1(µ−µ0)− 1

2 tr(Σ0Σ−1)
(25)

Now, derive the Expectation-Maximiazation rules for the mixture of Mutivariate Normal,
N (µk,Σk) for k = 1, . . . ,K and with the shared prior NIW(µ0, κ0,Σ0, ν0).

10

E step:

n
(t)
ik =

exp
[
− 1

2 (xi − µ(t)
k)>Σ

(t)−1
k (xi − µ(t)

k)
]
π

(t)
k∑k

j=1 exp
[
− 1

2 (xi − µ(t)
j)>Σ

(t)−1
j (xi − µ(t)

j)
]
π

(t)
j

(26)

M step: First,

π
(t+1)
k =

αk − 1 +
∑
i n

(t)
ik

N +
∑K
j=1 αj −K

. (27)

Now, in natural parameter space, θ1 = Σ−1µ and θ2 = − 1
2Σ−1. Thus,

Σ = −1

2
θ−1

2

µ = −1

2
θ−1

2 θ1

(28)

and

g(θ) =

[
− 1

4θ
>
1 θ
−1
2 θ1

d
2 log(2π)− 1

2 log | − 2θ2|

]
. (29)

So
∂g

∂θ1
=

[
− 1

2θ
−1
2 θ1

0

]
=

[
µ
0

]
∂g

∂θ2
=

[
1
4θ
−1
2 θ1θ

>
1 θ
−1
2

− 1
2θ
−1
2

]
=

[
µµ>

Σ

]
. (30)

The derivative ∂g1
∂θ2

comes from the identity ∂tr(X−1A)
∂X = −(X−1)>A(X−1)> and the invariance

of the trace operator under cyclic permutation; see ’Wikipedia/Matrix calculus’. Also recall that

φ0 =

(
κ0µ0

Σ0 + κ0µ0µ
>
0

)
m0 =

(
κ0

ν0 + d+ 2

)
φ(x) =

(
x
xx>

)
. (31)

Denote n(t)
k =

∑
i n

(t)
ik Combining all of this with (17) we see that

∂F

∂θ1
= κ0µ0 +

∑
i

n
(t)
ik xi −

(
κ0 + n

(t)
k

)
µ

(t+1)
k = 0

∂F

∂θ2
= Σ0 + κ0µ0µ

>
0 +

∑
i

n
(t)
ik xix

>
i −

(
κ0 + n

(t)
k

)
µ

(t+1)
k µ

(t+1)>
k −

(
ν0 + d+ 2 + n

(t)
k

)
Σ

(t+1)
k = 0

(32)
and hence

µ
(t+1)
k =

κ0µ0 +
∑
i n

(t)
ik xi

κ0 + n
(t)
k

Σ
(t+1)
k =

Σ0 + κ0µ0µ
>
0 +

∑
i n

(t)
ik xix

>
i −

(
κ0 + n

(t)
k

)
µ

(t+1)
k µ

(t+1)>
k

ν0 + d+ 2 + n
(t)
k

.

(33)

B.1 Introducing Stochasticity

After performing the E-step, we add an extra simulation step, i.e. we draw and impute the values for
the latent variables from its distribution conditioned on data and current estimate of the parameters.
This means basically nik gets transformed into δ(zi−k̃) where k̃ is value drawn from the conditional
distribution. Then we proceed to perform the M-step, which is even simpler now. To summarize
SEM for GMM will have following steps:

E-step in parallel compute the conditional distribution locally:

n
(t)
ik =

exp
[
− 1

2 (xi − µ(t)
k)>Σ

(t)−1
k (xi − µ(t)

k)
]
π

(t)
k∑k

j=1 exp
[
− 1

2 (xi − µ(t)
j)>Σ

(t)−1
j (xi − µ(t)

j)
]
π

(t)
j

(34)

11

S-step in parallel draw zi from the categorical distribution:

z
(t)
i ∼ Categorical(n

(t)
i1 , ..., n

(t)
iK) (35)

M-step in parallel compute the new parameter estimates:

π
(t+1)
k =

αk − 1 + T
(t)
k

N +
∑K
j=1 αj −K

µ
(t+1)
k =

κ0µ0 +
∑
i|z(t)i =k

xi

κ0 + T
(t)
k

Σ
(t+1)
k =

Σ0 + κ0µ0µ
>
0 +

∑
i|z(t)i =k

xix
>
i −

(
κ0 + T

(t)
k

)
µ

(t+1)
k µ

(t+1)>
k

ν0 + d+ 2 + n
(t)
k

.

(36)

where T (t)
k =

∣∣∣{ z(t)
i | z

(t)
i = k

}∣∣∣.

12

C Gibbs Sampler Derivation for GMM

The Markov blanket for zi becomes x−i, z−i, xi, φ0,m0, and α in this case. We obtain

P (zi | rest) =
P (xi | zi, {xj : zj = zi},m0, φ0)P (zi | z−i, α)

P (xi | x−i,m0, φ0)

=
exp[h(mzi , φzi)− h(mzi − 1, φzi − φ(xi))] exp[logB(~nk)− logB(~nk − ~ezi)]∑K
j=1 exp[h(mj , φj)− h(mj − 1, φj − φ(xi))] exp[logB(~nk)− logB(~nk − ~ej)]

=
exp[h(mzi , φzi)− h(mzi − 1, φzi − φ(xi))]

nzi−1

(
∑
k nk)−1∑K

j=1 exp[h(mj , φj)− h(mj − 1, φj − φ(xi))]
nj−1

(
∑
k nk)−1

=
exp[h(mzi , φzi)− h(mzi − 1, φzi − φ(xi))](nzi − 1)∑K
j=1 exp[h(mj , φj)− h(mj − 1, φj − φ(xi))](nj − 1)

(37)
which yields the conditional needed in Gibbs sampling to sample a latent variable zi.

As a pedagogical example, we derive Gibbs sampler for the Multivariate Gaussian with a Normal
Inverse Wishart.

First, apply the downdate equations in the following order:
κzi ← κzi − 1, νzi ← νzi − 1

µzi ←
(κzi − 1)µzi

κzi
− xi

Σzi ← Σzi −
κzi

κzi − 1
(xi − µzi)(xi − µzi)>

(38)

Update zi by smpling from the distribution:

P (zi = k | rest) =
P (xi | zi = k, x−i)(nk − 1)∑
j P (xi | zi = j, x−i)(nj − 1)

=
tνk−d+1

(
xi

∣∣∣ µk, (κk+1)Σk
κk(νk−d+1)

)
(nk − 1)∑K

j=1 tνj−d+1

(
xi

∣∣∣ µj , (κj+1)Σj
κj(νj−d+1)

)
(nj − 1)

(39)

then apply the update equations in the following order:

Σzi ← Σzi +
κzi

κzi − 1
(xi − µzi)(xi − µzi)>

µzi ←
κziµzi + xi
κzi + 1

νzi ← νzi + 1, κzi ← κzi + 1

(40)

At the end of the procedure, we obtain

µ̂k =
κ0µ0 +

∑
i:zi=k

xi

κ0 + ñk

Σ̂k =
Σ0 +

∑
i:zi=k

xix
>
i + κ0µ0µ

>
0 − (κ0 + ñk)µkµ

>
k

ν0 + ñk − d− 1

(41)

where again ñk = |{i : zi = k}|.

C.1 Gibbs Derivation

In the last section we used EM for inference and now we turn to Gibbs Sampling, another popular
method. Gibbs sampling is a variety of MCMC sampling in which we cycle through all our latent
random variables, resampling each conditioned on the currently sampled values of all other random
variables.

13

Gibbs sampling is an MCMC method that traditionally sweeps all the variables in each iteration and
one at a time, samples each variable conditioned on the rest (using p(zi | rest), the full conditional).
We can often do better (consequence of the Rao-Blackwell theorem) by collapsing and integrating
out θk and π. See Algorithm 4, and see Appendix C for more details.

The Markov blanket for zi becomes x−i, z−i, xi, φ0,m0, and α in this case. We obtain

P (zi | rest) =
P (xi | zi, {xj : zj = zi},m0, φ0)P (zi | z−i, α)

P (xi | x−i,m0, φ0)

=
exp[h(mzi , φzi)− h(mzi − 1, φzi − φ(xi))](nzi − 1)∑K
j=1 exp[h(mj , φj)− h(mj − 1, φj − φ(xi))](nj − 1)

(42)

Note that mk −m0 = nk −αk. Lset ñk = |{i : zi = k}| so that mk = m0 + ñk and nk = ñk +α.
Thus, we need to maintain only two invariants, nk and φk per component in the inference procedure.

Algorithm 4 Collapsed Gibbs sampling for mixture models

1: Initialize z randomly and evaluate initial counts ñk and statistics φk.
2: t← 0
3: while t ≤ T do
4: for i = 1→ N do
5: Remove datum from current component and update statistics:

ñzi ← ñzi − 1, φzi ← φzi − φ(xi)
6: Sample zi using the PMF stored in

p[k] ← (α+ ñk − 1) exp (h(m0 + ñk + 1, φk + φ(xi))− h(m0 + ñk, φk));
p← p/sum(p);

7: Add datum to the new component and update statistics: ñzi ← ñzi + 1, φzi ← φzi + φ(xi)
8: end for
9: t← t+ 1

10: end while

14

D (S)EM Derivation for LDA

We derive an EM procedure for LDA.

D.1 LDA Model

In LDA, we model each documentm of a corpus ofM documents as a distribution θm that represents
a mixture of topics. There are K such topics, and we model each topic k as a distribution φk over
the vocabulary of words that appear in our corpus. Each document m contains Nm words wmn
from a vocabulary of size V , and we associate a latent variable zmn to each of the words. The latent
variables can take one of K values that indicate which topic the word belongs to. We give each of
the distributions θm and φk a Dirichlet prior, parameterized respectively with a constant α and β.
More concisely, LDA has the following mixed density.

p(w, z,θ,φ) =

[
M∏
m=1

Nm∏
n=1

Cat(wmn | φzmn) Cat(zmn | θm)

][
M∏
m=1

Dir(θm | α)

][
K∏
k=1

Dir(φk | β)

]
(43)

The choice of a Dirichlet prior is not a coincidence: we can integrate all of the variables θm and φk
and obtain the following closed form solution.

p(w, z) =

[
M∏
m=1

Pol
(
{zm′n | m′ = m},K, α

)][K∏
k=1

Pol
(
{wmn | zmn = k}, V, β

)]
(44)

where Pol is the Polya distribution

Pol(S,X, η) =
Γ(η K)

Γ(|S|+ η X)

X∏
x=1

Γ
(∣∣{z | z ∈ S, z = x}

∣∣+ η
)

Γ(η)
(45)

for all j

for all i
for all k

α θm zmn wmn φk β

Figure 4: LDA Graphical Model

Algorithm 5 LDA Generative Model
input: α,β

1: for k = 1→ K do
2: Choose topic φk ∼ Dir(β)
3: end for
4: for all document m in corpus D do
5: Choose a topic distribution θm ∼ Dir(α)
6: for all word index n from 1 to Nm do
7: Choose a topic zmn ∼ Categorical(θm)
8: Choose word wmn ∼ Categorical(φzmn)
9: end for

10: end for

The joint probability density can be expressed as:

p(W,Z, θ, φ|α, β) =

[
K∏
k=1

p(φk|β)

][
M∏
m=1

p(θm|α)

Nm∏
n=1

p(zmn|θm)p(wmn|φzmn)

]

∝

[
K∏
k=1

V∏
v=1

φβ−1
kv

][
M∏
m=1

(
K∏
k=1

θα−1
mk

)
Nm∏
n=1

θmzmnφzmnwmn

] (46)

15

D.2 Expectation Maximization

We begin by marginalizing the latent variable Z and finding the lower bound for the likeli-
hood/posterior:

log p(W, θ, φ|α, β) = log
∑
Z

p(W,Z, θ, φ|α, β)

=

M∑
m=1

Nm∑
n=1

log

K∑
k=1

p(zmn = k|θm)p(wmn|φk)

+

K∑
k=1

log p(φk|β) +

M∑
m=1

log p(θm|α)

=

M∑
m=1

Nm∑
n=1

log

K∑
k=1

q(zmn = k|wmn)
p(zmn = k|θm)p(wmn|φk)

q(zmn = k|wmn)

+

K∑
k=1

log p(φk|β) +
M∑
m=1

log p(θm|α)

(Jensen Inequality) ≥
M∑
m=1

Nm∑
n=1

K∑
k=1

q(zmn = k|wmn) log
p(zmn = k|θm)p(wmn|φk)

q(zmn = k|wmn)

+

K∑
k=1

log p(φk|β) +

M∑
m=1

log p(θm|α)

(47)
Let us define the following functional:

F (q, θ, φ) := −
M∑
m=1

Nm∑
n=1

DKL(q(zmn|wmn)||p(zmn|wmn, θm, φ))

+

M∑
m=1

Nm∑
n=1

p(wmn|θm, φ) +

K∑
k=1

log p(φk|β) +

M∑
m=1

log p(θm|α)

(48)

D.2.1 E-Step

In the E-step, we fix θ, φ and maximize F for q. As q appears only in the KL-divergence term, it
is equivalent to minimizing the KL-divergence between q(zmn|wmn) and p(zmn|wmn, θm, φ). We
know that for any distributions f and g the KL-divergence is minimized when f = g and is equal to
0. Thus, we have

q(zmn = k|wmn) = p(zmn = k|wmn, θm, φ)

=
θmkφkwmn∑K

k′=1 θmk′φk′wmn

(49)

For simplicity of notation, let us define

qmnk =
θmkφkwmn∑K

k′=1 θmk′φk′wmn
(50)

D.2.2 M-Step

In the E-step, we fix q and maximize F for θ, φ. As this will be a constrained optimization (θ and φ
must lie on simplex), we use standard constrained optimization procedure of Lagrange multipliers.

16

The Lagrangian can be expressed as:

L(θ, φ, λ, µ) =

M∑
m=1

Nm∑
m=1

K∑
k=1

q(zmn = k|wmn) log
p(zmn = k|θm)p(wmn|φk)

q(zmn = k|wmn)
+

K∑
k=1

log p(φk|β)

+

M∑
m=1

log p(θm|α) +

K∑
k=1

λk

(
1−

V∑
v=1

φkv

)
+

M∑
m=1

µi

(
1−

K∑
k=1

θmk

)

=

M∑
m=1

Nm∑
n=1

K∑
k=1

qmnk log θmkφkwmn +

K∑
k=1

V∑
v=1

(βv − 1) log φkv +

M∑
m=1

K∑
k=1

(αk − 1) log θmk

+

K∑
k=1

λk

(
1−

V∑
v=1

φkv

)
+

M∑
m=1

µm

(
1−

K∑
k=1

θmk

)
+ const.

(51)

Maximizing θ Taking derivative with respect to θmk and setting it to 0, we obtain

∂L
∂θmk

= 0 =

Nm∑
j=1

qmnk + αk − 1

θmk
− µm

µmθmk =

Ni∑
j=1

qmnk + αk − 1

(52)

After solving for µm, we finally obtain

θmk =

∑Nm
n=1 qmnk + αk − 1∑K

k′=1

∑Nm
j=1 qmnk′ + αk′ − 1

(53)

Note that
∑K
k′=1 qmnk′ = 1, we reach at the optimizer:

θmk =
1

Nm +
∑

(αk′ − 1)

(
Nm∑
n=1

qmnk + αk − 1

)
(54)

Maximizing φ Taking derivative with respect to φkv and setting it to 0, we obtain

∂L
∂φkv

= 0 =

M∑
m=1

Nm∑
n=1

qmnkδ(v − wmn) + βv − 1

φkv
− λk

λkφkv =

M∑
m=1

Nm∑
n=1

qmnkδ(v − wmn) + βv − 1

(55)

After solving for λk, we finally obtain

φkv =

∑M
m=1

∑Nm
n=1 qmnkδ(v − wmn) + βv − 1∑V

v′=1

∑M
m=1

∑Nm
n=1 δ(v

′ − wmn) + βv′ − 1
(56)

Note that
∑V
v′=1 δ(v

′ − wmn) = 1, we reach at the optimizer:

φkv =

∑M
m=1

∑Nm
n=1 qmnkδ(v − wmn) + βv − 1∑M

m=1

∑Nm
n=1 qmnk +

∑
(βv′ − 1)

(57)

D.3 Introducing Stochasticity

After performing the E-step, we add an extra simulation step, i.e. we draw and impute the values for
the latent variables from its distribution conditioned on data and current estimate of the parameters.
This means basically qmnk gets transformed into δ(zmn − k̃) where k̃ is value drawn from the
conditional distribution. Then we proceed to perform the M-step, which is even simpler now. To
summarize SEM for LDA will have following steps:

17

E-step in parallel compute the conditional distribution locally:

qmnk =
θmkφkwmn∑K
k′=1 θmk′φk′wij

(58)

S-step in parallel draw zmn from the categorical distribution:
zmn ∼ Categorical(qmn1, ..., qmnK) (59)

M-step in parallel compute the new parameter estimates:

θmk =
Dmk + αk − 1

Nm +
∑

(αk′ − 1)

φkv =
Wkv + βv − 1

Tk +
∑

(βv′ − 1)

(60)

where Dmk =
∣∣∣{ zmn | zmn = k

}∣∣∣,
Wkv =

∣∣∣{ zmn | wmn = v, zmn = k
}∣∣∣, and

Tk =
∣∣∣{ zmn | zmn = k

}∣∣∣ =
V∑
v=1

Wkv .

18

	Introduction
	MAP Inference for Mixture Models
	Gibbs, EM, and SEM on a Simple Example
	Experiments
	Conclusion
	(Stochastic) EM in General
	(S)EM Derivation for GMM
	Introducing Stochasticity

	Gibbs Sampler Derivation for GMM
	Gibbs Derivation

	(S)EM Derivation for LDA
	LDA Model
	Expectation Maximization
	E-Step
	M-Step

	Introducing Stochasticity

