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Abstract

The Hierarchical Dirichlet Process (HDP) is a versatile, albeit computationally
expensive tool for statistical modeling of mixture models. In this paper, we intro-
duce a spectral algorithm. We show that it is both computationally and statistically
efficient. In particular, we derive the lower-order moments of the HDP and give
reconstruction guarantees. Moreover, we show that hierarchical spectral method
is able to generate a better results regarding likelihood performance.

1 Introduction

HDP mixture models are useful in modeling problems involving grouped data, where each observa-
tion within a group is drawn from a mixture model and it is desirable to share mixture components
across all the groups. A natural application with this property is topic modeling for documents,
possibly supplemented by an ontology. Inference in HDPs is typically carried out by using Markov
Chain Monte Carlo methods [I, 2] or stochastic variational algorithms [3]. Unfortunately these
methods are very costly when the model becomes complicated and has several layers.

To speed up parameter inference under HDP model, the present paper extends prior work on spectral
methods from Dirichlet Processes [4], Hidden Markov Models [5], the Indian Buffet Process [6] to
yet another model, the HDP. Spectral method is shown to provide superior speed in parameter infer-
ence under several models and their corresponding applications. The main idea of spectral learning
is to use method of moments to infer topics. The algorithm is simple and is easy to implement.
Besides, we will show later that the computation time is not affected by the number of layers.

Different from previous spectral learning work, our work provides the following adaptation:

e We introduce hierarchical decomposition tools. While we apply them to the Hierarchical
Dirichlet Process, they are valuable beyond that, e.g. for hierarchical structures in general,
such as the Nested Chinese Restaurant Franchise [2] or hierarchical clustering [7].

e The convergence analysis illustrates the interplay between sample size and data in hierar-
chies and can be applied on any arbitrary hierarchical tree structure.

e The algorithm is able to produce better result then LD A without increasing the time con-
sumption.

[8] shows that a two-layer version of the algorithm already outperform sampling-based algorithms
significantly both in terms of perplexity and speed. Since time consumption of our algorithm does
not increase with the number of layers, the algorithm enjoys significant improvement in time over
HDP sampler. In summary, the present work contributes to completing the tool set of spectral
methods. This is an important goal to ensure that entire models can be translated wholly into spectral
algorithms, rather than just parts.



2 Hierarchical Dirichlet Process

The HDP [1] uses a Dirichlet Process (DP) [9, 10] G; for each group j of data to handle uncertainty
in number of mixture components. At the same time, in order to share mixture components and
clusters across groups, each of these DPs is drawn from a global DP GGy. More formally, we have
the following statistical description of a L-level HDP.

Trees Denote by 7 = (V, E) atree of depth L. For any vertex i € 7 weuse p(i) € V, c¢(i) C V
and (i) € {0,1...,L — 1} to denote the parent, the set of children and level of the vertex respec-
tively. When needed, we enumerate the vertices of 7 in dictionary order. For instance, the root node
is denoted by i = (0), whereas i = (0,4, 2) is the node obtained by picking the fourth child of the
root node and then the second child thereof respectively. Finally, we have sets of observations X;
associated with the vertices i (in some cases only the leaf nodes may contain observations). This
yields

Go ~ DP(H, o) 0ij ~ Gi

Gi ~ DP (Gpiy @) x;; ~ Categorical(6;;)
Here ; denotes the concentration parameter at vertex i and H is the base distribution which governs
the a priori distribution over data items. Figure 1 illustrates the full model.

As explained earlier, the distributions G; have a stick breaking representation sharing common
atoms:

Gi =" muby, with ¢, ~ H. (1)

v=1

3 Moments of the HDP

To construct spectral method for HDP, a crucial step is to derive the orthogonally decomposable
tensors from the moments. We follow the notations in [1 1] and define ® to be the outer product,

v® ;= vy ® -+ ® v to be a p-th order tensor powers and A := Zf 1 ?p to be a rank-p tensor.

Moreover, in order to neatly describe tensor multiplication in our algorithm, for a rank-p tensor, we
define the multilinear tensorial reduction T'(A, V1, V2 .. VP) € RmM1X:Xmp g

1 2 P — o B 1 2 L YP
T(AV V...V )ii7i2...ip = § : A]la]2-~~]p thil Vj27i2 ‘/.jp7ip'
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Since the order of the data is exchangable, we introduce a symmetrization operator Sy, as
> A )
" weS(k)
where S(k) denotes the symmetric group and 7 denotes the permutations.

The first-order moment is equivalent to the weighted sum of latent topics using topic distribution
under node i, so it is simply the weighted combination of ¢ where the weight vector is 7o, i.e,

M1 =E [37] =E [q)h,j] =E [‘bﬂi] = (I)7T0. (3)
The last equation uses the fact that, for # ~ Dirichlet(yomg), E[x] = 7. Besides, for such vari-

able , using the definition of Dirichlet distribution, we have E[[r?];;] = X5 01(71—01 + 1) and

E[[r2);;] = ~ 47 moimo;. The second-order moment thus becomes
My := E[z; ® 23] = E [®h;1 1,87 = ®E [mir] | 7 = oE®T, )

where [E]; = 'yo+17r‘“ (Yomoi + 1) and [E];; = %HWOZWOJ Matrix E can be decompose as the

summation of a diagonal matrix and a symmetric matrix, my ® my. By replacing E with these two
matrices, the second-order moment can be re-written as

0
Yo+ 1

1
M, = dEDPT = @ ( 7o ® o + diag(w0)> o, (5)
Yo +1



where @7 in the first term can be further replaced with M. Thus, we define the second term as the
second-order tensor, which is a rank-k£ matrix,

K

. 04
1dlag(770)) o7 = ; s o i@ (6)

1
Sy =My — — M, @M, =
2 2 1 1 & My (70+

Yo

The third-order tensor is defined in the form of S5 := Zfil Ce i - ¢; R ¢d; @ ¢, and can be derived
using M, My and M3 by applying the same technique of decomposing matrix or tensor into the
summation of symmetric tensors and diagonal tensor. The derivation details for a multi-layer HDP
tensor is provided in the Appendix. Furthermore, Lemma 2 in the Appendix shows the generalized
tensors for HDP with different number of layers. Using Lemma 2, we found that the coefficient and
moment for different hierarchical tree can be derived recursively using a bottom-up approach, i.e.,
coefficient for k—layer HDP can be derived using the coefficient of (k — 1)-layer HDP and moments
at a node i can be derived using the moments calculating under its children, ¢(i). The recursive rule
is provided in Lemma 2.

Lemma 1 (Symmetric Tensors of HDP) Given a L-level HDP, with hyperparameters i, the sym-
metric Tensors for a node i at layer | can be expressed as:

S = M} =T(m,®), S:= M}~ CL-Si5i =T(CL- diag (m), ®, D),
Sii=Mi-Ci-Si®S @8] —CL &[Sy ® M| =T(Cf - diag () , @, ®, D),

where
o — Vi+1 CHD | o — o) ﬂ 0 _ Vi1 U+
Vi1 +1 Vi1 (Vi1 + 1) (M + 2)
0 g OV 1 (1+1 C o o
Gy = Pt —— o, o) =t 3 2 oL
(1 +1) ¢f %HC Vit Vi

Here M} denotes the k-th moment at node i

M = M) 7
T e 2 M ?

starting with M} = E[®"_, zi5] whenever i represents an leaf node. In other words, M} is obtained
by averaging the associated moments over all of its children evenly.

4 Spectral Algorithm for HDP

Here we provide a simple method for estimating number of topics, K. Next, we introduce a way to
estimate the moment at the leaf nodes. The estimated moments are used to estimate the diagonalized
tensors. Last, applying general tensor decomposition technique gives us the estimated topic vectors.

Inferring mixture number In contrast to the CRF where the number of mixture components k is
settled by means of repeated sampling, we use an approach that directly infers & from data itself. The
concatenation of all the first-order moments spans the space of ® with high probability. Thus, the
number of linearly independent mixtures &, is close to the rank of M. While direct calculation of
the rank of M is expensive, one can estimate k by the following procedure: draw a random matrix

’ ~ ~ T ~ ’ !
R € R™*k for some k' > k, and examine the eigenvalues of M| = <M1R) (M1R> € RF <k

We estimate the rank of A to be the point where abrupt decrease occurs on the magnitude of
eigenvalues.

Moment estimation An L-level HDP could be viewed as a L-level tree, where each node repre-
sents a DP. Then the estimated moments for the whole model can be calculated recursively by (7).
The estimated moments at the leaf node i are deﬁned as:

M,‘ := ¢, (x;) for leaf where ¢,.(x;) := Z Tijy @ Tij, -+ D Ty,
J1,J2



and m; is the number of words in the observation x;. Here (x1,22) and (z1, 22, x3) denote the
ordered tuples in x, with x; encoded as a binary vector, i.e. z; = e; iff the -th data is j.

We then apply Excess Correlation Analysis (ECA) to infer hidden topics, ®. Dimensionality reduc-
tion and whitening is then performed on S’? to make the eigenvectors of it orthogonal and to project
to a lower dimensional space. Finally, we decompose the tensor and transform the eigenvectors back
into the original space to obtain the reconstructed d. The complete algorithm is described in Algo-
rithm 1 in the Appendix with details given. Besides, concentration of measure for these estimated
quantities are given in Section F in the Appendix.

S Experiments

An attractive application of HDP is topic modelling in a corpus where in documents are grouped
naturally. We use Enron email corpus [12] and Multi-Domain Sentiment Dataset [13] to validate
our algorithm. After the usual cleaning steps (stop word removal, numbers, infrequent words), our
training dataset for Enron consisted of 167, 851 emails sent with 10, 000 vocabulary size and average
91 words in each email. Among these, 126, 697 emails are sent internally within Enron and 41154
are from external sources. In order to show that the topics are able to cover topics from external and
internal sources and are not biased toward the larger group, we have 537 internal emails and 4, 63
external email in our test data. To evaluate the computational efficiency of the spectral algorithms
(using fast count sketch tensor decomposition(FC) [8], robust tensor method (RB) and alternating
least square (ALS)), we compare the CPU time and per-word likelihood among these approaches.

Table 1: Results on Enron dataset with different tree structures and different solvers: spectral HDP
using fast count sketch method (sketch length is set to 10), alternating least square (ALS) and robust
tensor power method (RB).

Tree K sHDP (FC) sHDP (ALS) sHDP (RB)

Enron 2-layer 50 like./time  8.09/67 7.86/119 7.86/2641
100 like/time  8.16/104 7.82/668 7.82/5841

Enron 3-layer 50  like/time  7.93/68 7.78/121 7.77/2710

100 like./time 8.18/101 7.69/852 7.68/5782

We further compare spectral method under balanced/unbalanced tree structure of data on Multi-
Domain Sentiment Dataset. The dataset contains reviews from Amazon reviews that fall into four
categories: books, DVD, electronics and kitchen. We generate 2 training datasets where one has
balanced number of reviews under each categories (1900 reviews for each category) and the other
has highly unbalanced number of examples at the leaf node (1900/1500/700/300 reviews for the
four categories), while the test dataset consisted of 100 reviews for each categories. The result in
Table 2 show that spectral algorithm with multi-layers structure will perform even better than with
flat model when the tree structure is unbalanced.

Table 2: Results on Sentimental dataset. Train data 1 is selected so that the there are balanced
numbers of reviews under each category. Train data 2 is selected to have highly unbalanced child

number at the leaf nodes.
Tree train data 1 K=50 K=100 train data 2 K=50 k=100

Sentiment 2-layer  like./time 7.9/38  7.99/151  like./time  8.23/36  8.14/147
Sentiment 3-layer  like./time  7.92/37 7.96/150  like./time  8.17/38  8.07.148

The results of the experiments throw light on two key points. First, leveraging the information in
the form of hierarchical structure of documents, instead of blinding grouping the documents into
a single-layer model like LDA, will result in better performance (i.e. higher log-likelihood) under
different settings. The tree structure is able to eliminate the pernicious effects caused by unbalanced
data. For example, a 2-layer model like LDA considers every email to be equally important, and
so for a topic relating to external world it will perform worse, as most of the emails are exchanged
within the company and they are unlikely to possess topics related to the external emails. Second,
although spectral method cannot obtain a solution that has higher performance in perplexity, it can
be used as a tool for picking up a nice initial point.
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Figure 1: Hierarchical Dirichlet Process with observations at the leaf nodes.

B Generalized HDP Tensor and Proof of Symmetric Tensors

Symmetric Tensors for the HDP
‘We begin our analysis by deriving the moments for a three layer HDP. This allows us to provide detail
without being hampered by cumbersome notation. After that, we analyze the general expansion.

B.1 Multiple Layer HDP
Lemma 2 (Symmetric Tensors of HDP) For an L-level HDP, with hyperparameters, 71,2,
...YL—1 we have

Sy := My = T(m, ),

Sy := My — Co - $1ST = T(C3 - diag (mp) , @, @),

S3:=M3—Cy-51®851®S51 —C5-63[S2 ® M1] = T(Cs - diag (mp) , D, @, D),

The key difference is that here the coefficients C; are recursively defined since we need to take
expectations all the way up to the root node. This yields

L—1 i—1
[T v -1 1L 7L
& _L—li:1 , G= i = ’
21“[1 (vi +1) =1 jl_Tl (Y25 +1)
L—1 i—1 L—1
I1 2 L1 ITve—s I1 v
Ci=p— L G=Y /G
L (G 1) (i +2)) =t jU1 (ve—j +2) 1T (v +1)



i—1 j—1 i—1 )
L—2 L YL—k H YL—k L—1 1:[1 YL—j
Cs =3 Z Z i k=1 k=1 Jj=

TS et ) I o+ 1) (s + 1) Gy +2)

B.2 Three Layers

The three layer HDP is structurally similar to LDA. Its tensors are derived in [4]. We begin by
considering a three model to gain intuition of how to obtain the general format of the tensors. The
goal is to reconstruct the latent factors in ®. In the case of topic modeling, the j-th column denotes
the word distribution of the j-th topic.

Lemma 3 (Symmetric tensors of 3-layer HDP) Given a 3-layer HDP with hyperparameters vy
and 5 at layers 1 and 2 respectively, the symmetric tensors are given by
Sl = M1 = ,11(7'1'0,(1))7

SQ = M2 — CQSlSlT = M2 — %Slsf = T(Cg . dlag (7'('0) ,q), q)> s

Sz =Mz —Cy- 51 @851 @851 —C5-63[5 @ M| =T (Ce - diag (mo) , @, P, @),

where
Cy = Y2+7+1
m+1)(e2+1)
_ 13
M) +2)(e+1D)(2+2)
Ce— Y271 (71 + 72 +2)
A2 (et (Mmtre+l)
oAbt 29% + 295 + 372 +4

Mm+1)(m+2)(re+1)(2+2) "

Proof Note that by definition of the Dirichlet Process, the means match that of the reference mea-
sure. This means that we can integrate over the hierarchy

Elz] = E6,4)1G, ) () [Ewwcpm,wi) [‘bﬁi]] ®)
= EGp(n\Gp(p(i)),"/(P(i)) [(I)Trp(i)] )
= P7p(p(i)) = P70 (10)
Then deriving the first-order tensor is straightforward,
Sl = Ml = Ew [xl] = q)ﬂ'o = T(?To,(I)) (11)
Similarly, to derive the second order tensor, we first need the following terms: for ¢ # j we have
TFT
EGP(;)\Gp<p(i>)7’Y(P(i)) [Ew\Gp(i)fY(i) [(I)iﬂ-iiﬂijq)j H (12)
g q)"YQWp(i)iﬁg(i)j T
=BG |Gppay) (1) i vo + 1 J
Y2 Y1T0iT0;
=T| ———F,9,,0, 13
(vz +1 1 +1 ]) (1
Likewise, when the indices match, we obtain
TxT
EG, 0 (Gytpion (o) | Bl ) [2imismi @] ]| (14)
(vempiyi + D)pyi o p
= EGp(i)le(m)),'Y(P(i)) [(I)i (72 + 1) P,



_ Yo mmg; + Toi 1
B ((72+1) (m+1) (v2+1)
Then the moment M5 could be written as
M; =E, [z, ® 23] = E [E, [21 ® 22|Gi]]
=E [E; [21]Gi] @ E; [22|Gi]]
=®E [E [mn{]] @

Y271
= - - 9 S
e I CTE T
( Yo+ +1
(m+1)(2+1)

The second-order symmetric tensor Sy could then be obtained by defining

WOi,‘I’z‘,‘I’z‘)

- ding <7ro>,<1>,q>)

Y271
S =My — ———F——=51® S 15
P G O )

:T< et
Y (11 +1) (2 +1)

Before deriving the third-order tensor, we derive E[(®;7;) ® (®;m;;) ® (®;m;;)] for the following
three cases. First, for i = j = k, we have:

- diag (Gy) , P, <I>> .

3
EGp(i)le(p(i))7’Y(p(i)) [Eﬂchp(i),’Y(i) [((I)i'n—ii)® ”

| e O 1) (2o +2) g g
(v2+1) (92 +2) (16)
_ T( V3 moi (Y1moi + 1) (v170i + 2) 372 moi (Y170 + 1)
(v2+1) (12 +2) (n+1)(n+2) (2+1)(2+2) (m+1)
2mo;
+ 7, P, Py, Dy
(v2+1) (72 +2) )
Second, for i = j # k, we have:
2
EG, 0 Gyt 2 00) |l ) (@)™ @ (i) |
B T(%(i)i O2mpi +1) Lok g g <I>k>
(v2+1) (92 +2)
_ V3 moi (Y17moi + 1) Y170k 72 Y1T0i Tok
=T ’ (I)i7 ‘I)ia (bk
(2+1)(2+2) (n+1)(n+2) (2 +1)(2+2) (1 +1) an
7
Third, for ¢ # j # k, we have:
E [Eq (6, (@) © (@5717) © (@] (18)
B {T <7§7Tp<i>ﬂp<i>j7fp<i>k b, ;. @kﬂ
(2 +1) (2 +2)
:T( 7% 7127T0i7T0j770k 7@i7®j7¢)k>.
(2 +1D)(r2+2)(n+1)(n+2)
Defining
Sy =Mz —Cy-51®5 ®5 —C5-63[Sy @ M|
= T(CG dlag (77—0)7(1)7(1)7(1)) (19

we solve Cy, Cs, Cg as follows.



Note that for ¢ # j # k, [S3iji = 0 and [S3[S2 ® Mi]],;, = 0. Thus

o = [Mslijk
= Sk
[S1]i[S1];[51 ]
_ V3 YEm0i 0 Mok ) 1
(2+ 1) (2+2) (1 +1)(m+2) moimojmok
2,2
_ 7271 (20)
(e +D(2+2)(n+1)(n+2)
Similarly, for ¢ = j # k, [Ss]i;x = 0. Thus
O [M3]iix, — Ca[S1]i[S1]:[S1]x
’ [S2] i [ M)k
:73’)’17Toi770k + 72 (71 + 2) Y1m0i ok . (Mm+1D(re+1)
2+ (r2+2)(m+1)(n+2) moumor (v2+7 +1)
_ Y271 (71 + 2 +2)
= (21
(1+2)(2+2) (11 +12+1)
Finally,
Cs = [M3]iii — Ca[S1]:[S1]:[S1])i — 3C5[Sa]is[Mi];
Vi
_ 2v5m0i + 372 (71 +2) moi + 2 (11 + 1) (11 + 2) o
(2 +1) (2 +2) (1 +1) (n +2) 1moi
_ 671+ 672+ 297 +293 + 37271 +4 )
N+ Mm+2)(2+1)02+2)
|
C Spectral Algorithm for HDP
Algorithm 1 Spectral Algorithm for HDP
Require: Observations x
1: Inferring mixture number
Using all leaf nodes i; of the HDP tree compute the rank k of My = | M2 M2 Mt
2: Moment estimation A .
Compute moment estimates M? and tensors S2.
3: Dimensionality reduction and whitening
Find W € R¥** such that WT S§W = I,.
4: Tensor decomposition
Obtain eigenvectors v; and eigenvalues \; of S9.
5: Reconstruction
. C
Result set & — {)\ic?’ (wh” vi} , (23)
6

where C'5 and Cy are coefficients defined in Lemma 3. See the Appendix for a derivation of

(23).

D Proof of reconstruction formula

Dimensionality reduction and whitening To reduce the computational complexity and make the
statistics at the root SO orthogonally decomposable, it is desirable to construct a low-dimensional



orthogonal representation of S9. Specifically, we find W € R?** such
WTSIW = I,

where [ is a k-by-k identity matrix. A stable yet computationally efficient way to find W is to
compute the top k eigenvectors U € R?*¥ and eigenvalues ¥ € R¥**_ and to use W = UX /2 as
whitening matrix.

Reconstruction In this step the recovered eigenvectors are transformed back to the original space,

and & is then recovered. Concentration of measure guarantees for the reconstructed ® are given in
the next section. Note that due to the amount of noise in real-world data, not all columns in ® might
lie on the probability simplex. This can be addressed by projection, i.e. by removing negative entries
and normalizing the sum to 1. We show in Section 5 that even with this modification, the recovered

® is accurate.

Define & := T'(+/Csdiag(/7), ®) and perform SVD on O such that ® = USV”. Then

Sy = 0dT =USSTUT (24)
Ce .. 1 ~ L
Ss=T ( diag () , P, P, <I>> (25)
’ Csv/Cs \\/7
Since in our algorithm W7 SoW = I, W = US~! Thus
T(S3, W, W, W) (26)
Cs ; ( 1 > T & T & T &
=T(——=diag| — | , W ", W ", W~ 27
( /T 7 )
Cs . < 1 ) T T 1T
=T diag | — | ,V*, V",V (28)
( VT 7 )
The corresponding eigenvalues \; and eigenvectors v;, with some permutation 7, are
Cs . ( 1 )
N = s;,——diag [ —— (29
Cs/C; & Nars
v; = siVTem (30)
Therefore
Wt =W'w)"'w” = su” @31)
(W+)T v; = 5;(US)VT ey, = 5i\/Cs\/Tm: P, (32)
T,
@, = WL v (33)
8iV O3/ Y,

Rearranging Equation 29, we have
SN S— _ AW T (34)
03\/031/’}/7”)\1" i 06/03

Sq

E Tensor decomposition solvers

Robust tensor power method  Since the estimation of S might not be perfect, and tensors might
not be orthogonally decomposable, a robust tensor power algorithm is employed here to recover the
robust eigenvectors. The key step is iterate the update:

0 v/ ||v|| and v < T(S9, W, W01, Wh,_1) (35)

until convergence to a eigenvector. In this method, s random vectors are initialized as random draws
from unit sphere in R, and each of them is updated ¢ times according to (35). We then update
the one with the largest eigenvalue for another ¢ times to ensure convergence and return this one.
It is straightforward to parallelize the updates of these vectors to speed up. See [ 1] for a detailed
description and perturbation analysis of the robust tensor power method.

10



Alternating Least Square Another commonly used method for solving tensor decomposition is
alternating least square method. The main idea is to concatenate the tensors into a matrix and then
minimize the Frobenius norm of the difference:

min |[[S5(W, W, W)ty — Vdiag(\)(V © V)T, (36)
where the definition of operators used are:
S(l): |:S[:5:51] S[:7:72] S[”Kﬂ (37)
VoV=I[Buv vsBu - vx Bog]. (38)

The notation ® is the Khatri-Rao product and H represents the Kronecker product. Taking the
second and third V in Vdiag(V ® V)7 as fixed, we get the closed form solution of the optimization
problem as:

Vdiag(\) = [Ss(W, W, W)]1) (Vo V) (VIV). A 2)"

where the notation .A denoting point-wise power. By iteratively updating v; until it converges, we
solve the optimization problem in (36).

However, we found that the algorithm does not guarantee to converge with high dimensional data.
According to experimental results, the objective function does not always decrease after each itera-
tion. This is due to the fact that the objective function is not necessarily a convex function since there
is a cubic function of the unknown parameters. To deal with the problem, following [14], alternating
rank-1 update, which is an alternating version of the tensor power method, is guarantee to converge
locally. Th update rule becomes

Bi = [Ss(W, W, W,)] 1y (vi © vi) (0] 05) ™2, (39)

Xo=Billy, v =5/ ||l 0

Vi € [K]. Iteratively updating the eigenvector until converges gives us the largest eigenvector with
corresponding eigenvalue. Before deriving the second eigenvector, we deflate the original tensor by
subtracting the mode-1 tensor constructed by the derived eigenvector and eigenvalue.

F Concentration of measure bounds

We derive theoretical guarantees for the spectral inference algorithms in an HDP. Specifically we
provide guarantees for moments M}, tensors Si, and latent factors ®. The technical challenge rel-
ative to conventional models is that the data are not drawn iid. Instead, they are drawn from a
predefined hierarchy and they are only exchangeable within the hierarchy. We address this by intro-
ducing a more refined notion of effective sample size which borrows from its counterpart in particle
filtering [15]. We define n; to be the effective sample size, obtained by hierarchical averaging over
the HDP tree. This yields

1 for leaf nodes
n; = . -1 41)
) ? [Siecs) &]

otherwise
One may check that in the case where all leaves have an equal number of samples and where each
vertex in the tree has an equal number of children n; ; is the overall sample size.

Theorem 4 For any node i in an L-layer HDP with r-th order moment M} and for any § € (0,1)
the following bound holds for the tensorial reductions M, (u) :== T (M}, u,--- ,u) and its empirical

estimate M, := T(ME, u,--- ,u).

Pr{ sup ‘Mr(u)—Mr(u) <2+\/%1n(5}>1_5

uiflul| <1

As indicated, n; plays the role of an effective sample size. Note that an unbalanced tree has a smaller
effective sample size compared to a balanced one with same number of leaves.
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Theorem 5 Given an L-layer HDP with symmetric tensor Si. Assume that § € (0,1) and denote
the tensorial reductions as before S,.(u) := T(Siu,--- ,u) and S.(u) := T(S},u, - ,u). Then
we have for r € {2,3}

S, — S,

Pr sup <e p>1-96 42)
uiflu| <1

where for some constant ¢
€2 1= Sni_% {2 + \/ln(3/6)} and 43)
[z + \/ln(3/5)} . (44)

Nl=

€3 1= cny

This shows that not only the moments but also the symmetric tensors directly related to the statistics
® are directly available. The following theorem guarantees the accurate reconstruction of the latent
feature factors in ®. Again, a detailed proof is relegated to Appendix G.4.

Theorem 6 Given an L-layer HDP with hyperparamter +; at node i. Let oy, (®) denote the smallest
non-zero singular value of ®, and ¢; denote the i-th column of ®. For sufficiently large sample size,
and for suitably chosen § € (0,1), ie.

N . ) 2
37’1;5 |:2 4 /ln(3/5)} < C(3’)/0 mln]6ﬂ-0]0k ((I))

we have Pr {‘ P, — @U(i)

Se}zl—éwhere

. 2 1
w2

o 1) minj T0;j Ok (CI))

Here {él, Ci)g, e ,@k} is the set Algorithm 1 returns, for some permutation o of {1,2,--- ,k},

i€1,2,---,k, and some constant c.

The theorem gives the guarantees on [, norm accuracy for the reconstruction of latent factors. Note
that all the bounds above are functions of the effective sample sizes n;. The latter are a function of
both the number of data and the structure of the tree.

G Concentration of Measure

G.1 Effective sample size

In the following it will be useful to keep track of the explicit weighting inherent in the definition of
the moments M. In this context recall that M} = ﬁ > ce(i) M and that furthermore for leaf

nodes M is the weighted average over all combinations of occurring attributes.

— lnli?
Inll3

Definition 7 (Effective sample size) For any average x := ;, MiTi, we denote by neg its

effective sample size.

To see that this definition is sensible, consider the case of 7; = [~ and 1 € R!. In this case we
obtain neg = [, as desired for even weighting.

Lemma 8 Denote by n; € R normalized vectors with n;; > 0 and ||n;||, = 1. Moreover, let
;i > 0 with Zl Ai = 1. Then the effective sample size of the concatenated vector n = W;\;n;
satisfies




This follows by direct calculation. In particular, note that ||5|; = 1. Hence Hn||§ =Y, N HmHg
Taking the inverse yields the claim.

We now explicitly construct an auxiliary weighting vector (") of dimensionality p("). At the leaf
level we use a vector of dimensionality 1 and weights 1. As we ascend through the tree, all children
are given weights 1/|c(i)| and a weighting vector ") = |¢(i)| Wice() nW") is assembled. For
convenience we will sometimes also make use of d(i, r), the set of all index vectors used in 7;, which
is the same as the number of documents under this node.

G.2 Proof of Theorem 4

Proof Recall that for both empirical estimate and expectation of moment at node i, we have:
. 1 . .
i_ J— (i,r)
Mr =y 2o Mi= D i enee) (45)
j€e(i) s€d(i)

Now define

[1]

[X] = sup ‘T(M;7ua o 7u) _T(Mivua"' 7u) .

wifjul|<1

The deviation between empirical average and expectation observed when using X. Then Z[X] is
concentrated. This follows from the inequality of [16] since for any r € d(i, k)

IEXT] = S\ {as}) U {3 <0l ller(as) = (@I < V208, (46)
Hence the random variable =[X] is concentrated in the sense that Pr {Z[X] — Ex[Z[X]] < €} >
. €2 . ir
1 — 6 with § = exp (_W) or, in other words, € = ||®7)|[21/In(1/9).

The next step is to bound the expectation of Z[X]. This is accomplished as follows:

Ex [E[XH SEX7X’ sSup ‘T(M;aua au) —T(M;,U,,'“ 7u)‘]

wiflul| <1

“E,Exx | sup | 3 oanl (T(pp(as),u,- u) = Tlpp(al),u,- u))
usl|ul| <1 sed(i)

<2E,Ex | sup Z angi”)T(sDr(xs),u,“’ )
wlull<1 | S0

<2E,Ex ||| Y oanl ()
L s€d(i)

1
2 2

<2Ex |E, Z Usnéi7r)99r(x5) < 2H77(i’r)||27
sed(i)

Here the first inequality follows from convexity of the argument. The subsequent equality is a
consequence of the fact that X and X’ are drawn from the same distribution, hence a swapping
permutation with the ghost-sample leaves terms unchanged. The following inequality is an
application of the triangle inequality. Next we use the Cauchy-Schwartz inequality, convexity and

last the fact that ||,.(2)|| < 1. Combining both bounds yields ¢; > [, (2 + «/111(1/5)). For

the definition of efficient number, since |||, = 1, we have n;, = 1/||n")||2. Thus we obtained
the theorem. |
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G.3 Proof of Theorem 5

Proof By theorem 4 and the definition of Si and Si, the bounds for tensors can be easily obtained.
For S5, we have:

5 - 3] = |1 - - S0 81— Mi 4 Ca- St st
<[4 - M| + o |35 @ 81 - 5} @ 8}
. . T . 7
<oz - 23] + |31 - si] |35 - s+ 2080 1 - 1

< (IS s +20n®V ] (24 VG ) + [In®V e (2 + vin375)]

For S5, expanding the

]S;)fsg <IMi-Cy-SteSies -G [Sies] - M+ C-Se8ed
+C5 - 63 |:»§2®§1:|H
<ot - s +c4<]s;51 ast|sio g 2)+3c4sf Si_ g
+3C5‘S§—S§ ‘S{—S{ +3c5(s§ si— Sill 4.5 Sl—ng)

< [z + 3C5 2] (2+ VInB/9)) + (C1+3Cs) In“V]lz (2 -+ v/In(3/9) )
£3(Cat Co)lln IR (24 VInGTD)) + Calln®VI3 (2+ VIn(375)

(48)
|

G.4 Proof of Theorem 6

Proof We follow the similar steps for complexity analysis in [4]. Using the definition of tensor
structure we stated in Lemma 2, we define:

b= T(,/CY - 70, D), (49)

where H = [Hy, Hy,- - , Hy] is a normalized vector. So we have:

[CYminmojop (@) < oy, <<i>) <1,
’ (50)

g1 (‘i) S(Tl ((I)) Cg’yo.
Thus, SS and Sg can be transformed to:
59 = T(CY - diag (mp) , @, ®) = ®OT

c? 1 R (51
SY=T 5 dia, ( ),<I>,<I>,<I>
=Ty e\ U )
Let \; be the singular values of S5, we have:
Cy 1
N= —5 (52)
CY/CY \/Toi
such that, for i € [K],
0 1 0 1
Co <\ Co (53)

— i < - .
CY/CY V0 — CY/CY \/min; mo;
Next, as in Algorithm 1, T/ whitens a rank k approximation to S9, U. Here we define 5”87 1, to be the

best rank k approximation of 5‘8. Besides, define:
M:=WwTd, M=wT"d. (54)
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Lemma 9 (Lemma C.1 in [4]) Let Iy be the orthogonal projection onto the range of W and 11 be
’ < ox (99) /2,

| g}

Ok
Wt <200 (8), W] <301 (%)

the orthogonal projection onto the range of 0. Suppose HSS - S8

e =1, ] <2 ] <

A 4 N
s

55— 83

11— Ty | < |58 - s3]

By using the upper bound of )\; and Lemma C.1 and Lemma C.2 in [4], we get:
Lemma 10 Suppose Egy < oy, (59) /2. For ||0]| = 1, we have:
|7 (58, w,w,we) — 7 (89, Wo)|
alsos] Js s

O3/ i o (8) o ()

Following the similar steps in Lemma C.3 in [4], we have

<c

Lemma 11 (SVD Accuracy) Suppose HSS — S'SH < o (Sg) /2, with probability greater than 1—¢'

3,10 /0
k>Cs 03% (57)

ey

|vi —0i]] < e
where
chlss-ss)  se-s
+
C3v/a i rojon (8) on ()

Combine everything together, we have:

Cc1 =

(58)

Lemma 12 (Lemma C.6 in [4]) Suppose HSS — S‘QH < ok (SS) /2, with probability greater than

1— ', we have

1 K3
B; — — (W+) Bil| < e=— 0 ¢ (59)
7 0’ min; g ]-03
where
|52 - s8], csse -]
€= + (60)
oy, (@) Cop (@)
Using the bounds for tensor in Theorem 5, we finish the proof. ]
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