Manzil, Carlos, Soumya

Introduction

Methodology Setup ADMM

Experiments Implementation Results

Conclusions

Manzil Zaheer (manzil@cmu.edu) Carlos Ramírez (carlosrc@cmu.edu) Soumya Batra (soumyabatra@cmu.edu)

Advised by Mladen Kolar (mkolar@chicagobooth.edu)

Large Scale Structure Learning of

Conditional Gaussian Graphical Models

May 7, 2014

> Manzil, Carlos, Soumya

Introduction

Methodology Setup ADMM

Experiments Implementation Results

Conclusions

Motivation

- GGMs provide useful framework to represent relationships in complex systems.
- GGMs can be thought as undirected graphs of a set of random variables following a multivariate Gaussian distribution where
 - Nodes represents random variables
 - An edge between two nodes is absent if and only if the two r.v.s represented by those nodes are independent conditional on all other variables
- Modern financial markets are complex systems where uncovering relationships among firms may be of particular interest
 - Firms have become increasingly linked to each other through a complex and usually opaque network of relationships
 - Uncovering those relationships may be useful to predict future firm performance and thus firm prices and returns

Large Scale
Structure
Learning of
Conditional
Gaussian
Graphical
Models

Customer Supplier Network

Introduction

Manzil, Carlos, Soumya

Methodology Setup ADMM

Experiments

Implementation Results

Conclusions

Manzil, Carlos, Soumya

Introduction

Methodology Setup ADMM

Experiments Implementation Results

Conclusions

Problem Abstraction

Assumption

$$X \mid Z = z \sim \mathcal{N}(\mu(z), \Sigma(z))$$

- ► Goal: Learn the conditional independence relationships among components of vector X given Z = z.
 - Let $\Omega(z) = \Sigma(z)^{-1} = (\omega_{ab}(z))_{a,b\in[p]\times[p]}$
 - Pattern of non-zero elements of this matrix encodes the conditional independencies

$$X_a \perp X_b \mid X_{-ab}, Z = z \quad \Leftrightarrow \quad \omega_{ab}(z) = 0$$

► Our data set consists of *n* time instances {*z*₁, · · · , *z_n*}. At each *z_i*, we observe *n_i* instances of data vector *x_{ij}*

Manzil, Carlos, Soumya

$$\min_{\Omega(\cdot)\in\mathcal{F}} \left\{ \sum_{i\in[n]} \left(\operatorname{tr}(C_i\Omega(z_i)) - \log|\Omega(z_i)| + \mu \|\Omega(z_i)\|_1 \right) + \lambda \operatorname{pen}\left(\{\Omega(z_i)\}_{i\in[n]} \right) \right\}$$

Introduction

Methodology Setup ADMM

Experiments Implementation Results

Conclusions

- Desired properties for penalty function
 - Perform model selection and control the smoothness of the estimator ω_{ab}(z)
 - Encourage the successive function values ω_{ab}(z_i), ω_{ab}(z_{i+1}) to be close
- Our choice of penalty function:

Optimization Problem

Optimization Problem

$$\mathsf{pen}\left(\{\Omega(z_i)\}_{i\in[n]}\right) = \sum_{i\in[n]} \left(\sqrt{\sum_{a,b} (\omega_{ab}(z_{i+1}) - \omega_{ab}(z_i))^2}\right)$$

> Manzil, Carlos, Soumya

Introduction

Methodology Setup ADMM

Experiments Implementation Results

Conclusions

Parallelizing

Original Optimization Problem

$$\min_{\Omega} \left\{ \sum_{i=1}^{n} \left(\operatorname{tr}(C_{i}\Omega_{i} - \log |\Omega_{i}| + \mu \|\Omega_{i}\|_{1} \right) + \lambda \sum_{i=1}^{n-1} \|\Omega_{i+1} - \Omega_{i}\|_{F} \right\}$$

Rewrite for parallelization

$$\min_{\Omega,R} \left\{ \sum_{i=1}^{n} \left(\operatorname{tr}(C_{i}\Omega_{i}) - \log |\Omega_{i}| + \mu \|\Omega_{i}\|_{1} \right) + \lambda \sum_{i=1}^{n-1} \|R_{i}\|_{F} \right\}$$

subject to: $R_i = \Omega_{i+1} - \Omega_i$

ADMM Form

Define constraint set $C = \{(\Omega, R) : R_i = \Omega_{i+1} - \Omega_i\}$ $\min_{\Omega, R, W, S} \left\{ \sum_{i=1}^n (\operatorname{tr}(C_i \Omega_i) - \log |\Omega_i| + \mu ||\Omega_i||_1) + \lambda \sum_{i=1}^{n-1} ||R_i||_F + I_C(W, S) \right\}$

subject to: $\Omega_i = W_i$ $R_i = S_i$

7/12

Large Scale Structure Learning of Conditional Gaussian Graphical Models

> Manzil, Carlos, Soumva

ADMM Steps

1. 2n-1 Independent Optimizations

$$\Omega_i^{k+1} := \underset{\Omega_i \succ 0}{\operatorname{arg min}} \left\{ \operatorname{tr}(C_i \Omega_i) - \log |\Omega_i| + \frac{\rho}{2} \|\Omega_i - W_i^k + U_i^k\|_2^2 \right\}$$
$$R_i^{k+1} := \underset{R_i}{\operatorname{arg min}} \left\{ \lambda \|R_i\| + \frac{\rho}{2} \|R_i - S_i^k + T_i^k\|_2^2 \right\}$$

Introduction

Methodology Setup ADMM

Experiments Implementation Results

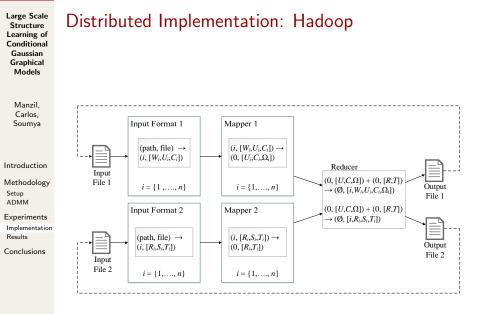
Conclusions

2. Projection onto the constraint set

$$(W,S) := \Pi_{\mathcal{C}}(\Omega^{k+1} + U^k, R^{k+1} + T^k)$$

$$U_i^{k+1} := U_i^k + (\Omega_i^{k+1} - W_i^{k+1})$$

$$T_i^{k+1} := T_i^k + (R_i^{k+1} - S_i^{k+1})$$



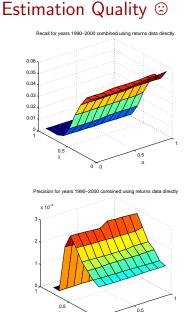
> Manzil, Carlos, Soumya

Introduction

Methodology Setup ADMM

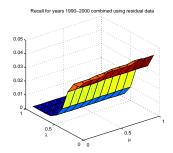
Experiments Implementation Results

Conclusions

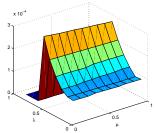


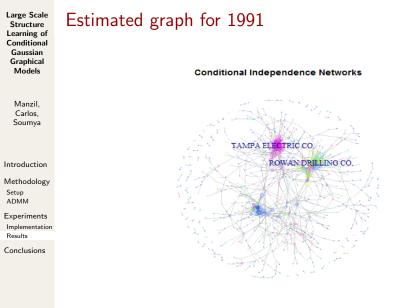
0 _ 0

μ



Precision for years 1990-2000 combined using residual data





11/12

Large Scale Structure Learning of Conditional Gaussian Graphical Models

> Manzil, Carlos, Soumya

Introduction

Methodology Setup ADMM

Experiments Implementation Results

Conclusions

Conditional GGMs provide an important tool to uncover relationships among different variables in complex systems.

- Using returns data the use of graphical models seems to uncover industry relationships among firms
- However, conditional GGMs does not provide further information about the nature of such relationships (besides the identification of industry clusters).
 - We may need to include more information about firms to understand better the nature of such relationships
- ► Future Work

Conclusions

- Handle missing data
- Feature engineering

12/12

Large Scale Structure Learning of Conditional Gaussian Graphical Models

> Manzil, Carlos, Soumya

Introduction

Methodology Setup ADMM

Experiments

Implementation Results

Conclusions

Thank You