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Motivation

» GGMs provide useful framework to represent relationships
in complex systems.

» GGMs can be thought as undirected graphs of a set of
random variables following a multivariate Gaussian
distribution where

» Nodes represents random variables

» An edge between two nodes is absent if and only if the two
r.v.s represented by those nodes are independent conditional
on all other variables

» Modern financial markets are complex systems where
uncovering relationships among firms may be of particular
interest

» Firms have become increasingly linked to each other
through a complex and usually opaque network of
relationships

» Uncovering those relationships may be useful to predict
future firm performance and thus firm prices and returns
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Problem Abstraction

X |Z =z~ N(u(2), 5(2))

» Goal: Learn the conditional independence relationships
among components of vector X given Z = z.

> Let Q(2) = £(2) 7 = (wab(2))a,belplx[pl
» Pattern of non-zero elements of this matrix encodes the
conditional independencies

Xy, L Xp |X_ab,Z:Z = wab(Z):O

» Our data set consists of n time instances {z1,--- ,z,}. At
each z;, we observe n; instances of data vector x;;



» Mellon University

Large Scale
Structure
Learning of
Conditional
Gaussian
Graphical
Models

Manzil,
Carlos,
Soumya

Introduction

Methodology
Setup
ADMM
Experiments
Implementation

Results

Conclusions

Optimization Problem

min {Z (er(Cif2(z) — log [2(z)] + lI92(z)1) + Apen ({Q(z,-)},-e[n])}

QIEF |\ e

» Desired properties for penalty function
» Perform model selection and control the smoothness of the

estimator w,p(2)
» Encourage the successive function values wap(2;), wap(Zit1)

to be close
» Our choice of penalty function:

pen ({22)}ieq) = D | D (@ab(zi01) = wan(2))?

i€[n] a,b
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Parallelizing

n n—1
n {Z (tr(CiQ; — log || + pl|Qill1) + A 1941 — QillF}
i=1

=l

n—1
ik {Z(tr(CQ)—logIQHMIIQ ll1) +)\Z”R“F}

i=1 i=1
subject to: R; = Q,’+1 —Q;

Define constraint set C = {(, R) : Ri = Q11 — Q;}

n—1
min {Z(tr(cm—logmwunﬂ 1)+ A IRl + le(W, S)}

Q,R,W,S
i=1

subject to: Q; =W, R;=S;
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Estimation Quality ®

Recall for years 1990-2000 combined using returns data directly

Recall for years 1990-2000 combined using residual data

Precision for years 1990-2000 combined using residual data

x10™
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Conclusions

» Conditional GGMs provide an important tool to uncover
relationships among different variables in complex systems.

» Using returns data the use of graphical models seems to
uncover industry relationships among firms
» However, conditional GGMs does not provide further

information about the nature of such relationships (besides
the identification of industry clusters).

» We may need to include more information about firms to
understand better the nature of such relationships
» Future Work

» Handle missing data
» Feature engineering
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