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Abstract

In this report we study the paper titled, “List-Decoding Reed-Muller Codes over
Small Fields” by Parikshit Gopalan, Adam R. Klivans and David Zuckerman [6, 7].
The Reed-Muller codes are multivariate generalization of Reed-Solomon codes, which
use polynomials in multiple variables to encode messages through functional encoding.
Next, any list decoding problem for a code has two facets: Firstly, what is the max-
imal radius up to which any ball of that radius contains only a constant number of
codewords. Secondly, how to find these codewords in an efficient manner.

The paper by GKZ presents the first local list-decoding algorithm for the r-th order
Reed-Muller code RM(r,m) over F2 for r ≥ 2. Given an oracle for a received word
R : Fm2 → F2, their randomized local list-decoding algorithm produces a list containing
all degree r polynomials within relative distance (2−r − ε) from R for any ε > 0 in
time poly(mr, εr). Since RM(r,m) has relative distance 2r, their algorithm beats the
Johnson bound for r ≥ 2. Moreover, as the list size could be exponential in m at radius
2−r, their bound is optimal in the local setting.
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1 Introduction

We begin by providing basic definitions of code and comparing the two approaches – unique
and list – for decoding in Section 1.1. Then we go over the Reed-Muller codes (RM Codes)
and its unique decoding approaches in Section 1.2. Next, marketing of the GKZ approach
for locally list decoding RM codes is carried out in Section 1.3. Then we proceed to describe
the known list decoding method for Hadamard codes and port the method to RM codes in
Section 2. In doing so we face two major obstacles, which we tackle over the next sections
3-4. Finally we conclude in Section 5.

1.1 Basics of Code

Definition 1 A code over a finite field F is a triplet (C,Enc,Dec) consisting of:

• Codebook: The codebook C is a subset of Fn. The elements of the codebook, i.e. c ∈ C
are called codewords and the parameter n is called the blocklength.

• Encoding Map: Associated with a codebook is an encoding map Enc :M→ Fn which
maps the message set M, identified in some canonical way with {1, 2, ..., |C|} say, to
codewords belonging to Fn. The codebook can then be also defined the image of the
encoding map.

• Decoding Map: Associated with a codebook is an decoding map Dec : Fn →M which
maps each vector in Fn to some message in the message set M, identified in some
canonical way with {1, 2, ..., |C|} say.

Ideally, for any x ∈M we would like to have Dec(Enc(x)+noise) = x, for every “reasonable”
noise pattern that the channel might induce. In Section 1.1.2 and 1.1.3 we will see two
meanings of “reasonable” noise pattern and how well we can recover the original message.

Definition 2 The rate of a codebook C ∈ Fn, denoted R(C), is defined by:

R(C) =
log |C|
n log |F|

(1)

Definition 3 The minimum distance, or simply distance, of a codebook C, denoted by ∆(C),
is defined to be the minimum Hamming distance between two distinct codewords of C, i.e.

∆(C) = min
c1 6=c2∈C

∆(c1, c2) (2)

The relative distance of C, denoted δ(C), is the normalized quantity ∆(C)/n, where n is the
block length of C.
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The general goal in coding theory is to come up with a code having high rate and minimum
distance along with computationally efficient encoder and decoder. A general code might
have no structure and not admit any representation other than listing the entire codebook.
We now focus on an important subclass of codes with additional structure called linear codes.

Definition 4 Let F be a field and C ⊆ Fn is a subspace of Fn then C is said to be a linear
code.

If C has dimension k, then a matrix G consisting of columns as basis of the subspace is
called the generator matrix for C. The generator matrix G provides the encoding map,
Enc : Fk → Fn for the linear code as linear transformation, in which a a message x ∈ Fn
(thought of as a column vector) is encoded as the codeword Gx ∈ C ⊆ Fn. Although, even
this additional structure does not immediately give rise to efficient decoders. Mostly efficient
decoders are designed specially for each class of linear code, though there are some general
strategies like Syndrome decoding or Coset based nearest neighbour.

Examples: Parity check codes, Cyclic codes, Hamming codes, Golay codes, Reed-Solomon
codes, BCH codes, Reed-Muller codes, Low density parity check codes.

1.1.1 Johnson Bound

Among the rich set of bounds available in coding theory, we will make use of Johnson bound
for the problem of list decoding RM codes, which we state below:

Theorem 1 For any code C with distance δn and any r ∈ {0, 1}n

• Number of c ∈ C such that δ(r, c) < J(δ)− γ is at most O(γ−2)

• Number of c ∈ C such that δ(r, c) < J(δ) is at most 2n

where J(δ) = 1
2
(1−

√
1− 2δ).

1.1.2 Unique-Decoding

As discussed earlier, for decoding problem we would ideally like to have Dec(Enc(x)+noise) =
x for any x ∈M. Now suppose we have a code C with minimum distance d. Then distance
between any two codewords is atleast d. So for any r ∈ Fn, there can be only one codeword
within a distance of (d − 1)/2 from r (follows from the triangle inequality). Consequently,
if the received word r has at most η < (d − 1)/2n error fraction, then the transmitted
codeword can be uniquely identified. For example, in Figure 1 if the error rate is limited to
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Figure 1: Unique and List decoding. Figure copied from [10]

η = (d − 1)/2n, then the received word r lies within the ball of radius (d − 1)/2 from the
transmitted codeword, and hence can be uniquely decoded. Under such decoding scheme,
when using a code of minimum distance d, a noise pattern of d/2 or more errors cannot
always be corrected. Next we explore how to break this barrier of decodiblity d/2

1.1.3 List-Decoding

To decode error correcting codes beyond half the minimum distance, the concept of list
decoding was introduced by Elias [3] and Wozencraft [16]. The objective of list decoding is
to output all the codewords within a specified radius around the received word. After the
seminal results of Goldreich and Levin [4] and Sudan [14] which gave list decoding algorithms
for the Hadamard code and the Reed-Solomon code respectively, there has been tremendous
progress in designing list decodable codes. Formally, a code is said to be list decodable when:

Definition 5 Given 0 ≤ ρ ≤ 1, L ≥ 1, a code C ⊆ Fn is (η, L)-list decodable if for every
received word r ∈ Fn, we have

|{c ∈ C : ∆(r, c) ≤ ηn}| ≤ L (3)

Now if the fraction of errors that occurred during transmission is at most η then the
transmitted codeword is guaranteed to be contained in the output list. Note that in the
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traditional communication setup, we need to recover the transmitted message. In such a
scenario, outputting a list might not be useful. A quick fix to this problem is by declaring
a decoding error if list size > 1. The gain over unique decoding comes from the fact that
for most error patterns (of weight significantly more than half the distance of the code) the
output list size is at most one (provided large enough block length of the code was chosen).
In terms of Figure 1, it means that number of vectors in dotted lines is insignificant compared
to volume of shaded area (for large enough block length of the code). [10]

Also algorithmically, we would like to have an efficient list-decoding algorithm. Otherwise
the decoding problem can become trivial: one can always go through all the codewords in
the code and pick the ones that are within η (relative) Hamming distance of the received
word. For further details please check out the excellent surveys written by Guruswami [9, 8]
and Sudan [15].

1.2 Reed-Muller Codes

Reed-Muller codes (RM codes) were discovered by David E. Muller in 1954 [12] and Irving
S. Reed proposed the majority logic decoding for the first time [13]. Although RM codes
did not find many applications for traditional communication tasks (except for some limited
historical use in deep-space communications), RM codes are very useful in the design of
probabilistically checkable proofs in computational complexity theory.

Basically RM codes is a family of linear codes defined over a finite field Fq of size q. The
message space consists of degree ≤ r polynomials in m variables over Fq and the codewords
are evaluation of these polynomials on Fmq . Then RM code RMq(m, r) is defined as follows:

Definition 6 Given a field size q, a number m of variables, and a total degree bound r, the
RMq[m, r] code is the linear code over Fq defined by the encoding map:

Enc : f(X1, ..., Xm)→ 〈f(α)〉α∈Fmq

applies to the domain of all polynomials in Fq[X1, ..., Xm] of total degree deg(f) ≤ r.

Additionally RM code belongs to the classes of locally testable codes and locally decodable
codes.

In this report we restrict ourselves to the binary field. For the binary case, i.e. q = 2 the
parameters of the RM code are as follows:

• Block length: n = 2m

• Dimension: k =
∑r

i=0

(
m
i

)
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• Distance: d = 2m−r, δ = d/n = 2−r

In the special case for r = 1, RM code boils down to Hadamard code. Among other
things, a traditional communication application of Hadamard code was in CDMA (IS-95) as
long code for signal acquisition and synchronization due to its excellent distance property.
The Hadamard codes are uniquely and locally decodable when the error rate is less that
η < 1/4. Moreover for when error rate η < 1

2
− ε, list decoding of Hadamard code is known.

This is the Goldreich-Levin Method [4], which is attributed to Rackoff and outputs a list of
size ≤ 2m/ε2 in time poly(m, 1/ε) when error rate η < 1

2
− ε for some ε > 0.

1.2.1 Majority Logic Circuit Decoder

The majority logic circuit decoder is an efficient algorithm for decoding RM codes when the
number of errors are less than half the minimum distance, thus falls in the unique decoding
regime. It was proposed simultaneously by Muller and Reed [12, 13]. The algorithm is
summarized in Algorithm 1, which works when error rate η < 2−r−1 − ε.

Algorithm 1 Majority Logic Circuit Decoder for RM code

Input: A function R : F2
m → F2 such that ∃P ∈ F2[X1, ..., Xm]≤r with δ(R,P ) < 2−r−1 − ε

Output: The polynomial P =
∑

S⊆[m],|S|≤r cS
∏

i∈S Xi

1: Initialize t→ r, F → R,P → 0.
2: while t ≥ 0 do
3: for S ⊆ [m] with |S| = t do

4: cS = Majority over all b ∈ Fm2 of
(∑

a∈Fm2 ,aS=b F (a)
)

5: P ← P + cS
∏

i∈S Xi

6: ∀x ∈ Fm2 : F (x)← F (x)− cS
∏

i∈S xi
7: end for
8: t← t− 1
9: end while

1.2.2 Local Version

In step 3 of Algorithm 1 we are absolutely required to take majority over all possible b ∈
Fm−r2 . In fact we can be smart and take majority vote over only O( log(m

r/δ)
22rε2

) values of b, we
recover cS correctly with probability 1− δ/mr. This is because the total number of errors is
no more than 2m(2−r−1−ε) = 2m−r(1

2
−2rε) by assumption and each error can affect only one
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of the
∑

a∈Fm2 ,aS=b F (a), thus at most (1
2
− 2rε) fraction of

∑
a∈Fm2 ,aS=b F (a) cab be wrong.

Then by the union bound, every coefficient cS is recovered correctly, with probability 1− δ.
The overall running time is polynomial in mr and 1/ε as desired. This can be summarised
as the following result.

Theorem 2 Majority Logic Decoding solves the Local Unique Decoding problem with prob-
ability 1− δ in time poly(mr, ε, log(1/δ)).

1.3 Ideal Goals and Results of [6, 7]

The paper by GKZ presents the first local list-decoding algorithm for the r-th order Reed-
Muller code RM(r,m) over F2 for r ≥ 2. Given an oracle for a received word R : Fm2 →
F2, their randomized local list-decoding algorithm produces a list containing all degree r
polynomials within relative distance (2−r − ε) from R for any ε > 0 in time poly(mr, εr).
Since RM(r,m) has relative distance 2r, their algorithm beats the Johnson bound for r ≥ 2.
Moreover, as the list size could be exponential in m at radius 2−r, their bound is optimal in
the local setting.

1.3.1 Beats Johnson Bound!

• Recall Johnson Bound

– When η < J(δ)− ε, then

– code is list decodable with list size O(ε2)

– where J(δ) = 1
2
(1−

√
1− 2δ)

• For RM codes, we have δ = 2−r

Johnson Bound GKZ List Decoding

List Size O(ε2) O(ε2)
Time – polyr(m, 1/ε)
Max Error J(2−r)− ε 2−r − ε
Example (r = 2) 0.146 0.25

Table 1: On how the GKZ beats the Johnson bound
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1.3.2 Optimality

• Cannot do better as exponentially many codewords at distance of 2−r

• An example:

– Let V1, ...,Vt ⊂ Fm2 such that ∀i : dim(Vi) = m− r.
– Each Vi has a parity check matrix [H(i)]r×m

– Consider the polynomials

Pi(x) =
r∏
j=1

(1 + 〈H(i)
j ,x〉) =

{
1 if x ∈ Vi

0 else

– All Pi’s are unique

– They are valid codewords in RM(m, r) code!

– If we receive R = 0, then all these are at distance 2−r

– Note t = Number of subspace of dimension m− r > 2r(m−r)

1.4 Notations

Before delving into further details, we clearly layout the notations used in this report. A
scalar is denoted by lower-case italic letter or greek letter, e.g. n, η. A vector is denoted by
a bold lower-case letter, e.g. r whose ith entry is vi. Polynomials are denoted by upper-case
italic letter, e.g. P . Matrices and linear spaces are denoted by bold upper-case letters, e.g. A
with (i, j)th entry Ai,j. For a polynomial P , by PA we denote its restriction to the subspace
A, also note that deg(PA) ≤ deg(P ). Sets are denoted by upper-case calligraphic letters,
e.g. C. Table 2 gives a list of common symbols we used.

2 Overview

We first show the main ideas on the Hadamard local-list decoding and then later explain
them for RM local list-decoding.
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Symbol Definition
m Number of variables in RM codes
r Degree of polynomial in RM codes
n Block length = 2m

F Finite field, if size q then denote by Fq
x, r, .. Vectors in Fn
A Subspace of Fn
k Dimension of subspace
P,Q, .. Polynomials in Fq[X1, ..., Xm]
PA Restriction of Polynomial P to subspace A
η Error fraction
δ(C) Minimum distance of code C
∆(x,y) Hamming distance between codewords x and y
C Codebook
L List

Table 2: Symbols and definitions

2.1 Hadamard local list-decoding

Let R be the received word of length n = 2m. We wish to find all the codewords that are
within relative distance η = 1

2
− ε from R. Consider any particular codeword P such that

∆(R,P ) ≤ η. We consider two O(poly(m)) time algorithms in this section. The first simpler
algorithm outputs a list of size O(poly(m

ε
)) that contains P with high probability. The

second algorithm, due to Goldreich and Levin, outputs a shorter list of size O(poly(1
ε
)) that

contains P with a constant probability. Note that we are never concerned about outputting
incorrect P ’s that do not satisfy ∆(R,P ) ≤ η. This is because our algorithm can always test
P before outputting and the probability that an algorithm that tests at a random O(log n)
locations fails to identify if P ∈ L is exponentially small using Chernoff bounds. Thus, if
we repeat the second algorithm a few times then with high probability it will also output P
with high probability.

The intuition behind the first algorithm is to find O(m) correct evaluations of P so that
one can then solve m linear equations for the m bits of the message. One cannot brute
force these O(m) evaluations as that would require 2O(m) guesses and we are interested in
a poly(m) time algorithm. The crucial idea of the algorithm is to try to find the correct
evaluation of P at O(m) locations of a subspace A of dimension O (log m). Let PA denote
this correct evaluation. This is easier to find because the algorithm can guess the evaluation
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of P at the basis elements of A (only 2O(log m
ε
) = poly(m

ε
) guesses), and since P is a degree

one polynomial, use interpolation to find PA.
The above algorithm works but has the drawback that it only gives a O(poly(m

ε
)) upper

bound on the list size. However, we are interested in an efficient algorithm that gives a
O(poly(1

ε
)) bound on the list size. This is where the GL-algorithm makes the second crucial

observation that the dimension of the subspace A need not be O (log m
ε

), but can be
reduced to only O (log 1

ε
). We still wish to find the correct evaluation of P at O(m) points

but because we use a smaller subspace A the evaluation of P at any point is correct with
only a constant probability (i.e. not with high probability as earlier). However, this constant
is larger than the unique decoding parameter and we can use a unique decoding algorithm
to find PA.

Goldreich-Levin algorithm:

1. Find a random subspace A of dimension O(log ε).

2. Since P is linear, evaluate PA by trying every possible evaluation at the basis vectors
of A (polynomial in 1

ε
) and one of them will be correct.

3. Now assuming that we know the restriction PA, consider any point b ∈ Fm2 \A. Define
A′ = A∪ (b+A). They show that for at least 0.9 fraction of b, disagreement between
P and PA ∪ R(b+A) in subspace A′ is at most η

2
. The intuition behind this is that

PA and P agree on A by assumption, and each element in b + A will disagree with
probability at most η (using pairwise-independence).

4. For the above 0.9 fraction of b where ∆A′(Q ∪ R(b+A), P ) ≤ η
2
, we are within the

unique decoding distance in A′. Hence we can just use the majority algorithm to find
evaluation of P at b. For the remaining 0.1 fraction of b, the majority algorithm
outputs ‘garbage’. Let M denote the output of this majority algorithm, which we
know agrees with P for at least 0.9 fraction of the points.

5. Now we run the local unique decoding algorithm, which is the majority decoding
algorithm over a small random subset of locations, on M to find P .

2.2 RM local list-decoding

Let R ∈ Fm2 be the received word. Let η = 2−r − ε. The RM local list decoding algorithm of
Gopalan, Klivans, and Zuckerman [7] also follows the same general ideas of the GL algorithm.
Consider a fixed d polynomial P such that ∆(P,R) ≤ η. We design an algorithm that outputs
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(a) Select a random subspace (b) Assume correctness

(c) Consider a translate
(d) This subset error less than
min-distance/2

(e) Unique decode!

(f) One translate corrected, now
repeat for others in the interpo-
lating set

Figure 2: Idea of the algorithm
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Figure 3: Overview of the algorithm

P with a constant probability. It starts by finding the correct evaluation of P at a subspace
A of dimension k = O(log ε). Next it uses PA to find M ∈ Fm2 that agrees with P on at
least a constant fraction of points and M is within the unique decoding distance from P .
There are two major new challenges that appear though.

First, we note that finding PA is not easy because we are no longer dealing with linear
polynomials. Thus, even if we guess the evaluation of P at the k bases of A, we cannot
linearly interpolate it to the entire subspace A. Instead, for a degree d polynomial, we need
to guess at least O(kd) bits. This is not pleasant as it gives a list size and running time bound
of the order of 2(log 1/ε)d , which is quasi-polynomial in 1

ε
for d ≥ 2. To solve this challenge,

the authors in GKZ make an important observation that since ∆(P,R) ≤ η, with high
probability ∆(PA, RA) ≤ η + ε. Hence they find every possible degree d polynomials in the
subspace A that is at relative distance at most η from RA. This is again a list decoding RM
codes problem. However, since the dimension k of the subspace A is way smaller than the
original dimension 2m, we only need a global RM list-decoding algorithm. This is explained
in Section 3 in details. We also need to show that the size of the list outputted by the
algorithm is not ‘very large’, which is discussed in Section 4.

The second challenge is that given M ∈ Fn2 that agrees with P at atleast η fraction, how
to perform the unique decoding step efficiently to find P . The original paper of GKV that
appeared in STOC 2008 [6] did not find a ‘simple’ efficient way of handling this problem and
had to consider two different values of k for the analysis. Dvir and Shpilka [2] came up with
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a clever family of interpolating sets that can be used to locally decode M to find P . In this
report we describe another approach that appeared in a later version of the paper by GKZ.
It basically shows that Reed’s Majority Logic Decoding for unique decoding of RM codes
can be also done locally.

We next outline the algorithm. Recollect that we need to show that any fixed degree d
polynomial P with ∆(P,R) ≤ η will be present in the outputted list with atleast a constant
probability.

1. Select a random subspace A of dimension k = O
(
log 1

ε

)
.

2. To find the restriction PA, we note that with high probability it as at a relative distance
at most η+ ε from RA. Since k = O

(
log 1

ε

)
, we use the global list decoding algorithm

from Section 3 to find list LA. Next we try every possible element in LA and at least
one of them will be correct. The fact that |LA| ≤ (1

ε
)O(1) follows from Section 4.

3. Now assuming that we know PA, for any b ∈ Fm2 \A, define A′ = A ∪ (b + A). We
show that for at least a constant c fraction of b (here constant 1 − c is at most the
unique decoding distance 1− 2−r−1) disagreement between Pspan(A+b) and PA∪R(+

¯
A)

in subspace A′ is at most η
2
. Hence one can use unique decoding over A′ and find the

correct value for c fraction of points b. For the remaining 1− c fraction the algorithm
outputs ‘garbage’. Let M denote this output that agrees with P on at least c fraction
of the bits.

4. Now we run the local unique decoding algorithm 1 on M to find P .

3 Algorithm

3.1 Global RM list-decoding

We design a recursive global list decoding algorithm for RM codes. Suppose we receive
R ∈ Fk2 and we want to find a list L of all degree d polynomialsQ ∈ Fk2 such that ∆(R,Q) ≤ η,
where η ≤ 2−r. Let Q be a polynomial on variables X1, X2, . . . , Xk. Consider the polynomials
Qi = Q(X1, X2, . . . , Xk−1, i) for i ∈ {0, 1}. Let ηi denote the fraction of disagreement
between Qi and RX1,...,Xk−1,i. Assume that we know η0 ≤ η1 (this can be done because we
try both η0 ≤ η1 and η1 ≤ η0). Since η = η0+η1

2
, we get η0 ≤ η and η1 ≤ 2η (see Fig. 4).

Note that we can write
Q = Q0 +XkQ

′(X1, . . . , Xk−1)

14



Algorithm 2 GlobalListDecoding (A,R, k, η)

1: for all b ∈ F2 do
2: Set Lb = GlobalListDecoding(Ab, RAb , k, η)
3: for all Q0 ∈ Lb do
4: Set L1+b = GlobalListDecoding(A1+b, RA1+b +Q0, k − 1, 2η)
5: for all Q′ ∈ L1+b do
6: Set Q(X1, . . . , Xk) = Q0(X1, . . . , Xk−1) + (Xk + bk)Q

′(X1, . . . , Xk−1)
7: if ∆A(Q,R) ≤ η, then add Q to L
8: end for
9: end for

10: end for
11: Return L

for some degree d − 1 polynomial Q′. Since Q0 has degree at most d and error at most η0
with respect to RX1,...,Xk−1,0, we can use our algorithm recursively on Q0 to find a list L0.
Moreover, Q′ is a polynomial of degree at most d−1 and its disagreement with RX1,...,Xk−1,1 is
at most 2η, we can again use our algorithm recursively on Q′ to find list L1 as our induction
hypothesis gives that the minimum list decoding algorithm works till relative distance 2r−1.
Finally the algorithm outputs L = {L0, 0} ∪ {L1, 1} where {Li, i} denotes the list of strings
in Li appended with i.

The base case of the algorithm is when r = 1 or when there is no error. In the former
case we can use GL algorithm to output the list and in the later case we just solve a system
of linear equations.

Theorem 3 (Theorem 3 in Section 3 of [7]) Let l(r, k, η) denote the list size for degree
r, variables k, and error η ≤ 2−r list decoding. Let T (r, k, η) be the time taken by the above
recursive global list decoding Algorithm 1. Then, T (r, k, η) ≤ 23ml(r, k, η)r

We skip the proof since it follows using elementary algebra and refer interested readers to [7].
In Section 4 we bound l(r, k, η) to show that everything can be finished in O(poly m) time
when k is O(1

ε
).

Lemma 1 For any P that satisfies ∆(R,P ) ≤ η, where η = 2−r−ε, with constant probability
the GlobalListDecoding will find PA.

The above lemma is easy to prove using pairwise-independence of the elements in A and we
refer the reader to Lemma 4 in [7] for details.
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Figure 4: Idea of global list decoding

3.2 Putting it all together

We already know from Lemma 1 that with constant probability GlobalListDecoding finds
PA. Thus, whenever we find PA, we can interpolate it to obtain an oracle machine Mj ∈ Fn2
that is within the unique decoding distance from P . The following SelfCorrect algorithm
describes how to find Mj.

Algorithm 3 SelfCorrect(R, r, 2−r − ε)
1: Pick a random k-dimensional subspace A where 2k ≥ c2r+3ε−2

2: LA ← GlobalListDecoding(RA, r, 2
−r)

3: for all Qj ∈ LA do {define Mj as follows:}
4: Set Rj(x) = Qj(x) if x ∈ A; and Rj(x) = R(x) if x 6∈ A
5: for all b ∈ Fm2 do
6: Let A′ = A ∪ (b + A)
7: Unique decode Rj on A′ to get Q′ : A′ → F2 with deg(Q′) ≤ r
8: Set Mj(b + a0) = Q′(b + a0)
9: end for

10: end for
11: Return list of oracle machines M = {Mj}

Since with at least a constant probability Mj is within the unique decoding distance from
P , we can use the local unique decoding algorithm from Theorem 2 to obtain P . This is
described in the following MainAlgorithm.
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Algorithm 4 LocalListDecode(R, r, 2−r − ε)
1: Use SelfCorrect(R, r, 2−r − ε) to produce list M of oracle machines
2: Run Majority-Logic-Decoding from Theorem 2 on each MR

j ∈M with ε = 2−r−2, δ = 1
ε

to get polynomial P
3: LA ← GlobalListDecoding(RA, r, 2

−r)
4: Check by random sampling that P satisfies ∆(P,R) ≤ 2−r − ε

2
. Return the list L′ of all

such polynomials

4 Bounding the list size

In this section we bound the list size l(r,m, 2−r − ε). Since the size of the list outputted
by the global list decoding algorithm is at most l(r, k, 2−r) and it contains projection PA
with probability at least 1

2
, which can be uniquely decoded to obtain P , we directly get

l(r,m, 2−r − ε) ≤ 2l(r, k, 2−r).

Lemma 2 l(r,m, 2−r − ε) ≤ 2l(r, k, 2−r)

In the remaining section we show that l(r, k, 2−r) is O(ε−8r).

4.1 The Deletion lemma

Recollect that the Johnson bound tells us that for any code C the number of codewords C
such that ∆(R,C) < J(δ)−γ is bounded by c(γ) = O(γ−2)), where J(α) = 1

2
(1−
√

1− 2α).
Also, the number of codewords C such that ∆(R,C) < J(δ) is bounded by 2n. The deletion
lemma is a generalization of the Johnson bound for codes with not too many low weight
codewords. Let A(α) denote the number of codewords in a linear code C of weight less than
α.

Lemma 3 (Deletion Lemma [7]) Let C ⊆ Fn2 be a linear code. For any α ∈ [0, 1] and
any R ∈ Fn2 ,

• The number of C ∈ C such that ∆(R,C) < J(α)− γ is bounded by A(α)c(γ).

• The number of C ∈ C such that ∆(R,C) < J(α) is bounded by 2A(α)n.

Proof 1 Let L denote the list of C ∈ C such that ∆(R,C) < J(α). We remove codewords
from L such that there are no two codewords at relative distance less than α. We do this by
picking a codeword Ci ∈ L and deleting all codewords Cj, j 6= i, such that ∆(Ci, Cj) < α
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from L to obtain a list L′. From the definition of A(α), we know that there are at most A(α)
codewords Cj that satisfies this condition. Hence |L′| ≥ |L| − A(α). Now recursing the last
procedure on L′ we obtain list L∗. It is easy to see that this implies |L| ≤ |L∗|A(α). Now
using the Johnson bound on L∗ completes the proof.

4.2 Using Kasami-Tokura theorem to bound the list size

We wish to bound l(r, k, 2−r). Let α = 21−r − 2−2r+1. So J(α) = 2−r. Now the Deletion
lemma (Lemma 3) gives that l(r, k, 2−r) ≤ 2A(α)2k. So we basically need to bound A(α)
for α = 21−r − 2−2r+1. This is where we use the Kasami-Tokura theorem that helps in
understanding the weight distribution of RM codes over F2.

Theorem 4 (Kasami-Tokura [11]) Let P be any polynomial with deg(P ) ≤ r, where
r ≥ 2, such that wt(P ) < 21−r. Then there exists an invertible affine transformation such
that P can be written as either

P (Y1, . . . , Yr+t) = Y1Y2 . . . Yr−t(Yr−t+1Yr−t+2 . . . Yr + Yr+1Yr+2 . . . Yr+t)

where 3 ≤ t ≤ r and t+ r ≤ k, or

P (Y1, . . . , Yr+2t−2) = Y1Y2 . . . Yr−2(Yr−1Yr + Yr+1Yr+2 + . . .+ Yr+2t−3Yr+2t−2)

where 2 ≤ 2t ≤ k − r + 2.

Corollary 5 (Corollary 13 in [7]) For α = 21−r−2−2r+1, we have A(α) ≤ (2−2r+1)−2(k+1)

The above corollary follow from Lemma 4 along with some elementary algebra. We
refer the interested readers to GKZ [7] for details. Now combining all the results, we have
l(r,m, 2−r − ε) ≤ 2l(r, k, 2−r) ≤ 4.2kA(α) = O(2(4r−1)(k+1)) = O(ε−8r).

5 Conclusions

This report describes the local list decoding algorithm of Reed-Muller codes by Gopalan,
Klivans, and Zuckerman. The algorithm generalizes Goldreich-Levin local list decoding
algorithm for Hadamard codes. The main theorem shows that any P that is within distance
η = 2−r − ε from the received word R can obtained with a constant probability. There are
two main challenges that appear in this generalization. Firstly, obtaining projection of P on
a linear subspace A because we are no longer dealing with linear polynomials and a simple
brute force strategy will give an algorithm quasi-polynomial in 1

ε
. In GKZ they tackle this
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by observing that with high probability PA is within η + ε from RA. The second challenge
is that given M that is within the unique decoding distance from P , how to find P locally.
The authors observe that this can be done by transforming Reed’s Majority Logic decoding
algorithm to a local algorithm.

The paper mainly raises the following conjecture:

Conjecture 6 For field Fq and ε > 0, ∃c(q, ε, r) independent of n and m such that for all
m and r

lq(r,m, δq(r)− ε) ≤ c(q, ε, r)

Some progress has been made in the recent years towards proving the conjecture. The original
GKZ paper also showed that the above conjecture is true for small q when q − 1 divides
r. Later, in 2010, Gopalan [5] showed the conjecture to be true for quadratic polynomials
for all fields Fq. Recently, Blowmick and Lovett [1] have resolved this conjecture over Fp for
prime p. Their bounds on the list size, although constant for constant ε, depend badly on
1
ε
. Improving those bounds is an interesting open problem. In any case, resolving the above

conjecture is the main driving force behind this area of work.
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