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Algebraic Code

Algebraic Coding Theory

Linear Block Codes Convolutional Codes

I Partition message into
blocks and encode as
polynomials

I 1 codeword ↔ 1 message
I Reed-Solomon codes:

Univariate polynomials
I Reed-Muller codes:

Multivariate polynomials

I List decoding

I Message treated as series
and encoded into series

I 1 codeword is weighted
sum input messages

I Turbo codes

I Viterbi algorithm

I Historically used commonly
as easier to implement

Both posses same error correcting power!
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Background

Reed-Muller Codes
Given a field size q, a number m of variables, and a total degree bound r , the
RMq [m, r ] code is the linear code over Fq defined by the encoding map:

f (X1, ...,Xm)→ 〈f (α)〉α∈Fmq

applies to the domain of all polynomials in Fq [X1, ...,Xm] of total degree
deg(f ) ≤ r .

For the binary case, i.e. q = 2

I Block length n = 2m

I Dimension k =
∑r

i=0

(m
i

)
I Distance d = 2m−r , δ = d/n = 2−r

For r = 1 boils down to Hadamard code.
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Decoding RM Codes

I Unique Decoding:
I Majority Logic Circuit Decoder [Reed, 1954, Muller, 1954]
I Works when error rate η < 2−r−1 − ε

I List Decoding for the case r = 1
I Goldreich-Levin Method [Goldreich and Levin, 1989]
I When error rate η < 1

2 − ε
I Outputs a list of size ≤ 2m/ε2

I In time poly(m, 1/ε)

I List Decoding for the case r ≥ 2 – This talk!
I Built by generalizing GL as in [Gopalan et al., 2008]
I When error rate η < 2−r − ε
I Outputs a list of size O(ε−8r )
I In time polyr (m, 1/ε)
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Marketing of GKZ I

Beats Johnson Bound!
I Recall Johnson Bound

I When η < J(δ)− ε, then
I code is list decodable with list size O(ε2)
I where J(δ) = 1

2 (1−
√

1− 2δ)

I For RM codes, we have δ = 2−r

Johnson Bound GKZ List Decoding

List Size O(ε2) O(ε2)
Time – polyr (m, 1/ε)
Max Error J(2−r )− ε 2−r − ε
Example (r = 2) 0.146 0.25
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Marketing of GKZ II

Can we do better?

I No! as exponentially many codewords at distance of 2−r

I An example:
I Let V1, ...,Vt ⊂ Fm

2 such that ∀i : dim(Vi ) = m − r .
I Each Vi has a parity check matrix [H(i)]r×m

I Consider the polynomials

Pi (x) =
r∏

j=1

(1 + 〈H(i)
j , x〉) =

{
1 if x ∈ Vi

0 else

I All Pi ’s are unique
I They are valid codewords in RM(m, r) code!
I If we receive R = 0, then all these are at distance 2−r

I Note t = Number of subspace of dimension m− r > 2r(m−r)
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GL: Hadamard List Decoding

I Let the message be s ∈ Fm
2 and define P(x) = 〈s, x〉

I Then Had(s) = 〈P(α)〉α∈Fm
2

I We receive a noisy function R : Fm
2 → F2 such that

∆(P,R) ≤ η < 1
2 − ε

I Goal: Recover the message s (or equivalently P) from R

I Enumerated R

I Error R(x) 6= P(x)

I Correct R(x) = P(x)
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GL: Hadamard List Decoding

I Set k := O(log(m/ε))

I Begin by selecting a
random subspace A of
dim(A) = k

I Assume
∀x ∈ A : R(x) = P(x)

I Call them “hints”
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GL: Hadamard List Decoding

I Given the hints

I For any b ∈ Fm
2

I Consider the space b + A

I Error in A = 0 (assumed)

I Error in b + A < η + ε
(with constant probability)
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GL: Hadamard List Decoding

I Error in A = 0

I Error in b + A < η + ε

I Error in combined
subspace < η+ε

2 < 1
4

I Unique Decode!
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Interpolating Sets

I Q: For how many b’s do we need to run this?

I A: As many times as it needs to uniquely determine the
polynomial P

I In case of Hadamard codes, P is linear in m variables
I It suffices to run for b = e1, ..., em

I In general, for a degree r polynomial in m variables
I The set sufficient to efficiently determine the polynomial

uniquely is called the interpolating set
I Any Hamming ball of radius r is an interpolating set having

O(mr ) points.
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Summary

I But we dont know the hints!
I Iterate over all possible hints
I # hints = 2k = poly(m, 1/ε)
I ∴ still polynomial in list size and time
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Problems porting to RM

I Most of the steps for GL can be directly ported for general
RM[r ,m] codes

I Brute forcing over guess doesn’t work any more
I Too many choices for r ≥ 2
I For being able to evaluate Q(a + b), we need to make

2O(k r ) guess
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Finding restriction PA

I Note with high probability ∆(PA,RA) ≤ η + ε

I Thus, find list L of every degree r polynomial Q on k
dimensions s.t. ∆(Q,RA) ≤ η + ε

I Moreover, since k = O(log m
ε ), we can use a global list

decoding algorithm

Challenges:

1. Design a global RM list decoding algorithm.

2. Argue |L| is O(ε−8r )
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Global RM list decoding

I η = 1
2 (η0 + η1)

I Assume η0 ≤ η1

I Thus, η0 ≤ η and η1 ≤ 2η

I Note Q = Q0(X1, . . . ,Xk−1) + XkQ
′(X1, . . . ,Xk−1)

I Recurse over Q0: η0 ≤ η and degree at most k

I Recurse over Q ′: η1 ≤ 2η and degree at most k − 1

Since we don’t know if η0 ≤ η1, try every possible 2k orders
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Reduction of A′s dimension

I The original algorithm has k ≥ O(log m
ε ).

I Instead, k ≥ O(log 1
ε ) suffices

I First showed using clever interpolating sets,
Dvir-Shpilka [Dvir and Shpilka, 2008]

I Later showed by implementing Reed’s Majority Logic
Decoder locally

I Hence, l(r ,m, 2−r − ε) = O(l(r , k , 2−r ))

I We bound l(r , k , 2−r ) by O(ε−8r )
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Deletion lemma

Johnson Bound
For any code C with distance δn and any R ∈ {0, 1}n

I Number of C such that ∆(R,C) < J(δ)− γ is at most O(γ−2)

I Number of C such that ∆(R,C) < J(δ) is at most 2n

Let A(α) be number of codewords of weight less than α

Deletion lemma
For any linear code C and α ∈ [0, 1] and R ∈ {0, 1}n

I Number of C such that ∆(R,C) < J(α)− γ is at most A(α)O(γ−2)

I Number of C such that ∆(R,C) < J(α) is at most 2A(α)n

I Generalization of Johnson Bound for α = δ and A(δ) = 1
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Bounding list size |L|

Let α = 2(2−r − 2−2r )

Corollary of Kasami-Tokura lemma

A(α) ≤ 2.2(4r−2)(k+1)

Recollect l(r ,m, 2−r − ε) = O(l(r , k , 2−r ))

l(r , k, 2−r ) ≤ 2A(α)n, by Deletion lemma

= 2A(α)2k

= O(ε−8r ), using above corollary
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Open Problem

Conjecture

For field Fq and ε > 0, ∃c(q, ε, r) independent of n s.t. for all m and r

lq(r ,m, δq(r)− ε) ≤ c(q, ε, r)

I GKZ also proves for small q when q − 1 divides r

I Proven for quadratic polynomials r = 2 [Gopalan, 2010]

I List decoding over Fp for prime p
shown [Bhowmick and Lovett, 2014]
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