List

List Decoding Reed-Muller Codes over \mathbb{F}_{2}

Introduction
GL to GKZ
Problems
Solutions
Guesses
List Size
Conclusion

Sahil Singla (ssingla@cmu.edu) Manzil Zaheer (manzil@cmu.edu)

Original Paper by Gopalan, Klivans and Zuckerman

December 3, 2014

List

Algebraic Code

Algebraic Coding Theory

Linear Block Codes

- Partition message into blocks and encode as polynomials
- 1 codeword $\leftrightarrow 1$ message
- Reed-Solomon codes:

Univariate polynomials

- Reed-Muller codes:

Multivariate polynomials

- List decoding

Convolutional Codes

- Message treated as series and encoded into series
- 1 codeword is weighted sum input messages
- Turbo codes
- Viterbi algorithm
- Historically used commonly as easier to implement

Both posses same error correcting power!

Codes over \mathbb{F}_{2}

List
 Decoding Reed-Muller
 Background

Reed-Muller Codes

Given a field size q, a number m of variables, and a total degree bound r, the $\mathrm{RM}_{q}[m, r]$ code is the linear code over \mathbb{F}_{q} defined by the encoding map:

$$
f\left(X_{1}, \ldots, X_{m}\right) \rightarrow\langle f(\alpha)\rangle_{\alpha \in \mathbb{F}_{q}^{m}}
$$

applies to the domain of all polynomials in $\mathbb{F}_{q}\left[X_{1}, \ldots, X_{m}\right]$ of total degree $\operatorname{deg}(f) \leq r$.

For the binary case, i.e. $q=2$

- Block length $n=2^{m}$
- Dimension $k=\sum_{i=0}^{r}\binom{m}{i}$
- Distance $d=2^{m-r}, \delta=d / n=2^{-r}$

For $r=1$ boils down to Hadamard code.

ditity Decoding RM Codes

- Unique Decoding:
- Majority Logic Circuit Decoder [Reed, 1954, Muller, 1954]
- Works when error rate $\eta<2^{-r-1}-\epsilon$

Introduction
GL to GKZ
Problems
Solutions
Guesses
List Size
Conclusion

List
 Decoding
 Decoding RM Codes

Reed-Muller Codes over \mathbb{F}_{2}

Manzil, Sahil

- Unique Decoding:
- Majority Logic Circuit Decoder [Reed, 1954, Muller, 1954]
- Works when error rate $\eta<2^{-r-1}-\epsilon$
- List Decoding for the case $r=1$
- Goldreich-Levin Method [Goldreich and Levin, 1989]
- When error rate $\eta<\frac{1}{2}-\epsilon$
- Outputs a list of size $\leq 2 m / \epsilon^{2}$
- In time poly ($m, 1 / \epsilon$)

List
 Decoding Reed-Muller
 Decoding RM Codes

Codes over \mathbb{F}_{2}

Manzil, Sahil

- Unique Decoding:
- Majority Logic Circuit Decoder [Reed, 1954, Muller, 1954]
- Works when error rate $\eta<2^{-r-1}-\epsilon$
- List Decoding for the case $r=1$
- Goldreich-Levin Method [Goldreich and Levin, 1989]
- When error rate $\eta<\frac{1}{2}-\epsilon$
- Outputs a list of size $\leq 2 m / \epsilon^{2}$
- In time poly ($m, 1 / \epsilon$)
- List Decoding for the case $r \geq 2$ - This talk!
- Built by generalizing GL as in [Gopalan et al., 2008]
- When error rate $\eta<2^{-r}-\epsilon$
- Outputs a list of size $O\left(\epsilon^{-8 r}\right)$
- In time poly $(m, 1 / \epsilon)$

List
Decoding Reed-Muller Codes over \mathbb{F}_{2}

Introduction
GL to GKZ
Problems
Solutions

Marketing of GKZ I

Beats Johnson Bound!

- Recall Johnson Bound
- When $\eta<J(\delta)-\epsilon$, then
- code is list decodable with list size $O\left(\epsilon^{2}\right)$
- where $J(\delta)=\frac{1}{2}(1-\sqrt{1-2 \delta})$
- For RM codes, we have $\delta=2^{-r}$

Johnson Bound GKZ List Decoding

List Size	$O\left(\epsilon^{2}\right)$	$O\left(\epsilon^{2}\right)$
Time	-	poly $_{r}(m, 1 / \epsilon)$
Max Error	$J\left(2^{-r}\right)-\epsilon$	$2^{-r}-\epsilon$
Example $(r=2)$	0.146	0.25

List

Marketing of GKZ II

Can we do better?

- No! as exponentially many codewords at distance of 2^{-r}
- An example:
- Let $\mathbf{V}_{1}, \ldots, \mathbf{V}_{t} \subset \mathbb{F}_{2}^{m}$ such that $\forall i: \operatorname{dim}\left(\mathbf{V}_{i}\right)=m-r$.
- Each \mathbf{V}_{i} has a parity check matrix $\left[H^{(i)}\right]_{r \times m}$
- Consider the polynomials

$$
P_{i}(x)=\prod_{j=1}^{r}\left(1+\left\langle H_{j}^{(i)}, x\right\rangle\right)= \begin{cases}1 & \text { if } x \in \mathbf{V}_{i} \\ 0 & \text { else }\end{cases}
$$

- All P_{i} 's are unique
- They are valid codewords in $\mathrm{RM}(m, r)$ code!
- If we receive $R=0$, then all these are at distance 2^{-r}
- Note $t=$ Number of subspace of dimension $m-r>2^{r(m-r)}$

dicidys GL: Hadamard List Decoding

- Let the message be $s \in \mathbb{F}_{2}^{m}$ and define $P(x)=\langle s, x\rangle$
- Then $\operatorname{Had}(s)=\langle P(\alpha)\rangle_{\alpha \in \mathbb{F}_{2}^{m}}$
- We receive a noisy function $R: \mathbb{F}_{2}^{m} \rightarrow \mathbb{F}_{2}$ such that $\Delta(P, R) \leq \eta<\frac{1}{2}-\epsilon$
- Goal: Recover the message s (or equivalently P) from R

Solutions

- Enumerated R
- Error $R(x) \neq P(x)$
- Correct $R(x)=P(x)$

List
 Decoding
 GL: Hadamard List Decoding

Reed-Muller Codes over \mathbb{F}_{2}

Manzil, Sahil

Introduction
GL to GKZ
Problems
Solutions
Guesses
List Size
Conclusion

- Set $k:=O(\log (m / \epsilon))$
- Begin by selecting a random subspace A of $\operatorname{dim}(A)=k$
- Assume
$\forall x \in A: R(x)=P(x)$
- Call them "hints"

List
 Decoding
 GL: Hadamard List Decoding

Reed-Muller Codes over \mathbb{F}_{2}

Manzil, Sahil

Introduction
GL to GKZ
Problems
Solutions
Guesses
List Size
Conclusion

List
 Decoding Reed-Muller
 GL: Hadamard List Decoding

Codes over \mathbb{F}_{2}

Manzil, Sahil

Introduction
GL to GKZ
Problems
Solutions
Guesses
List Size
Conclusion

- Given the hints
- For any $b \in \mathbb{F}_{2}^{m}$
- Consider the space $b+A$
- Error in $A=0$ (assumed)
- Error in $b+A<\eta+\epsilon$ (with constant probability)

List
 Decoding Reed-Muller
 GL: Hadamard List Decoding

Codes over \mathbb{F}_{2}

Manzil, Sahil

Introduction
GL to GKZ
Problems

Solutions

Guesses
List Size
Conclusion

- Error in $A=0$
- Error in $b+A<\eta+\epsilon$
- Error in combined subspace $<\frac{\eta+\epsilon}{2}<\frac{1}{4}$
- Unique Decode!

List
 Decoding Reed-Muller
 GL: Hadamard List Decoding

Codes over \mathbb{F}_{2}

Manzil, Sahil

Introduction
GL to GKZ
Problems

Solutions

Guesses
List Size
Conclusion

- Error in $A=0$
- Error in $b+A<\eta+\epsilon$
- Error in combined subspace $<\frac{\eta+\epsilon}{2}<\frac{1}{4}$
- Unique Decode!

List
 Decoding Reed-Muller
 GL: Hadamard List Decoding

Codes over F_{2}

Manzil, Sahil

Introduction
GL to GKZ
Problems
Solutions
Guesses
List Size
Conclusion

- Error in $A=0$
- Error in $b+A<\eta+\epsilon$
- Error in combined subspace $<\frac{\eta+\epsilon}{2}<\frac{1}{4}$
- Unique Decode!

 Decoding
 Interpolating Sets

Reed-Muller Codes over F_{2}

Manzil, Sahil

Introduction
GL to GKZ
Problems
Solutions
Guesses
List Size
Conclusion

- Q: For how many b 's do we need to run this?
- A: As many times as it needs to uniquely determine the polynomial P
- In case of Hadamard codes, P is linear in m variables
- It suffices to run for $b=e_{1}, \ldots, e_{m}$
- In general, for a degree r polynomial in m variables
- The set sufficient to efficiently determine the polynomial uniquely is called the interpolating set
- Any Hamming ball of radius r is an interpolating set having $O\left(m^{r}\right)$ points.

List
Decoding Reed-Muller Codes over \mathbb{F}_{2}

Manzil, Sahil

Introduction
GL to GKZ
Problems
Solutions
Guesses
List Size
Conclusion

Summary

- Iterate over all possible hints
- \# hints $=2^{k}=\operatorname{poly}(m, 1 / \epsilon)$
- \therefore still polynomial in list size and time

List Decoding Reed-Muller Codes over \mathbb{F}_{2}

Problems porting to RM

- Most of the steps for GL can be directly ported for general $\mathrm{RM}[r, m]$ codes
- Brute forcing over guess doesn't work any more
- Too many choices for $r \geq 2$
- For being able to evaluate $Q(a+b)$, we need to make $2^{O\left(k^{\prime}\right)}$ guess

$\underset{\substack{\text { ocising } \\ \text { Decoung }}}{ }$ Finding restriction P_{A}

- Note with high probability $\Delta\left(P_{A}, R_{A}\right) \leq \eta+\epsilon$
- Thus, find list \mathcal{L} of every degree r polynomial Q on k dimensions s.t. $\Delta\left(Q, R_{A}\right) \leq \eta+\epsilon$
- Moreover, since $k=O\left(\log \frac{m}{\epsilon}\right)$, we can use a global list decoding algorithm

List

Finding restriction P_{A}

- Note with high probability $\Delta\left(P_{A}, R_{A}\right) \leq \eta+\epsilon$
- Thus, find list \mathcal{L} of every degree r polynomial Q on k dimensions s.t. $\Delta\left(Q, R_{A}\right) \leq \eta+\epsilon$
- Moreover, since $k=O\left(\log \frac{m}{\epsilon}\right)$, we can use a global list decoding algorithm

Challenges:

1. Design a global RM list decoding algorithm.
2. Argue $|\mathcal{L}|$ is $O\left(\epsilon^{-8 r}\right)$

List

Decoding Reed-Muller Codes over \mathbb{F}_{2}

Manzil, Sahil

GL to GKZ
Problems
Solutions
Guesses
List Size
Conclusion
Manzil, Sahil

Introduction

Conclusion

Global RM list decoding

- $\eta=\frac{1}{2}\left(\eta_{0}+\eta_{1}\right)$
- Assume $\eta_{0} \leq \eta_{1}$
- Thus, $\eta_{0} \leq \eta$ and $\eta_{1} \leq 2 \eta$

List
 Reed-Muller Codes over \mathbb{F}_{2}

Manzil, Sahil

Introduction
GL to GKZ
Problems
Solutions
Guesses List Size

Conclusion

Global RM list decoding

- $\eta=\frac{1}{2}\left(\eta_{0}+\eta_{1}\right)$
- Assume $\eta_{0} \leq \eta_{1}$
- Thus, $\eta_{0} \leq \eta$ and $\eta_{1} \leq 2 \eta$
- Note $Q=Q_{0}\left(X_{1}, \ldots, X_{k-1}\right)+X_{k} Q^{\prime}\left(X_{1}, \ldots, X_{k-1}\right)$
- Recurse over $Q_{0}: \eta_{0} \leq \eta$ and degree at most k
- Recurse over $Q^{\prime}: \eta_{1} \leq 2 \eta$ and degree at most $k-1$

Since we don't know if $\eta_{0} \leq \eta_{1}$, try every possible 2^{k} orders

List

- The original algorithm has $k \geq O\left(\log \frac{m}{\epsilon}\right)$.
- Instead, $k \geq O\left(\log \frac{1}{\epsilon}\right)$ suffices
- First showed using clever interpolating sets, Dvir-Shpilka [Dvir and Shpilka, 2008]
- Later showed by implementing Reed's Majority Logic Decoder locally
- Hence, $I\left(r, m, 2^{-r}-\epsilon\right)=O\left(I\left(r, k, 2^{-r}\right)\right)$
- We bound $I\left(r, k, 2^{-r}\right)$ by $O\left(\epsilon^{-8 r}\right)$

List
 Decoding
 Deletion lemma

Reed-Muller Codes over
\mathbb{F}_{2}

Solutions

Guesses
List Size
Conclusion

Johnson Bound

For any code \mathcal{C} with distance δn and any $R \in\{0,1\}^{n}$

- Number of C such that $\Delta(R, C)<J(\delta)-\gamma$ is at most $O\left(\gamma^{-2}\right)$
- Number of C such that $\Delta(R, C)<J(\delta)$ is at most $2 n$

List

Deletion lemma

Johnson Bound

For any code \mathcal{C} with distance δn and any $R \in\{0,1\}^{n}$

- Number of C such that $\Delta(R, C)<J(\delta)-\gamma$ is at most $O\left(\gamma^{-2}\right)$
- Number of C such that $\Delta(R, C)<J(\delta)$ is at most $2 n$

Let $A(\alpha)$ be number of codewords of weight less than α

Deletion lemma

For any linear code \mathcal{C} and $\alpha \in[0,1]$ and $R \in\{0,1\}^{n}$

- Number of C such that $\Delta(R, C)<J(\alpha)-\gamma$ is at most $A(\alpha) O\left(\gamma^{-2}\right)$
- Number of C such that $\Delta(R, C)<J(\alpha)$ is at most $2 A(\alpha) n$
- Generalization of Johnson Bound for $\alpha=\delta$ and $A(\delta)=1$

List Decoding Reed-Muller Codes over \mathbb{F}_{2}

Manzil, Sahil

Introduction
GL to GKZ
Problems
Solutions
Guesses List Size
Conclusion

Bounding list size $|\mathcal{L}|$

$$
\text { Let } \alpha=2\left(2^{-r}-2^{-2 r}\right)
$$

Corollary of Kasami-Tokura lemma
$A(\alpha) \leq 2.2^{(4 r-2)(k+1)}$
Recollect $I\left(r, m, 2^{-r}-\epsilon\right)=O\left(I\left(r, k, 2^{-r}\right)\right)$

$$
\begin{aligned}
I\left(r, k, 2^{-r}\right) & \leq 2 A(\alpha) n, \text { by Deletion lemma } \\
& =2 A(\alpha) 2^{k} \\
& =O\left(\epsilon^{-8 r}\right), \text { using above corollary }
\end{aligned}
$$

List
 Open Problem

Conjecture

For field \mathbb{F}_{q} and $\epsilon>0, \exists c(q, \epsilon, r)$ independent of n s.t. for all m and r

$$
I_{q}\left(r, m, \delta_{q}(r)-\epsilon\right) \leq c(q, \epsilon, r)
$$

- GKZ also proves for small q when $q-1$ divides r
- Proven for quadratic polynomials $r=2$ [Gopalan, 2010]
- List decoding over \mathbb{F}_{p} for prime p shown [Bhowmick and Lovett, 2014]

Reed－Muller

 Codes over\mathbb{F}_{2}

Many of the images were adopted from David Zuckerman＇s presentation！

围 Bhowmick，A．and Lovett，S．（2014）． List decoding reed－muller codes over small fields． arXiv preprint arXiv：1407．3433．

围 Dvir，Z．and Shpilka，A．（2008）．
Noisy interpolating sets for low degree polynomials．
In Computational Complexity，2008．CCC＇08．23rd Annual IEEE Conference on，pages 140－148．

圊 Goldreich，O．and Levin，L．A．（1989）．
A hard－core predicate for all one－way functions．
In Proceedings of the twenty－first annual ACM symposium on Theory of computing，pages 25－32．ACM．

Lecoling Reference II
 Codes over
\mathbb{F}_{2}

Manzil, Sahil

Introduction
GL to GKZ
Problems

Solutions

围 Gopalan, P. (2010).
A fourier-analytic approach to reed-muller decoding.
In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 685-694.

围 Gopalan, P., Klivans, A. R., and Zuckerman, D. (2008). List-decoding reed-muller codes over small fields.
In Proceedings of the fortieth annual ACM symposium on Theory of computing, pages 265-274. ACM.
(Muller, D. (1954).
Application of boolean algebra to switching circuit design and to error detection.

Electronic Computers, Transactions of the I.R.E. Professional Group on, EC-3(3):6-12.

List Decoding Reed-Muller Codes over \mathbb{F}_{2}

Manzil, Sahil

Introduction
GL to GKZ
Problems
Solutions
Guesses
List Size
Conclusion

Reference III

