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Abstract

Tensors are ubiquitous in real-world recommender systems. In this project, we
focus on finding interesting local structure in massive real-world tensors beyond tensor
decompositions. For example, in a tensor of subject−relation−object triplets derived
from the NELL dataset, we consider the question of finding the most interesting and
important facts about a subject or a relation. We suggest CF-ICF – a variant of TF-
IDF – to answer this question. Another question that we consider is how to discover
and characterize dense and semantically coherent local blocks in the tensor. To answer
this question, we propose Bayesian Tensor Blockmodels as a method that detects and
characterizes dense tensor blocks. We perform a literature survey of important related
work in the area, and evaluate our solutions on the tensors constructed from the Yago
and NELL datasets.

1 Introduction

Tensors occur in many real-world datasets. For example, in the NELL dataset, the three-
mode tensor consists of subject−verb−object pairs. In the Yago knowledge base, the tensor
consists of entity1−relation−entity2 triplets. We consider the problem of finding interesting
facts given a particular value of a particular mode of the tensor. For example, what are the
most interesting/surprising facts for Obama or Carnegie Mellon University? A primary
question that we need to answer in this context is to define the level of interestingness of
a fact. How do we quantify this? Is it based on its surprise factor to humans? Is it based
on its diversity from common, banal facts about the noun? How do we formally capture

1



this notion? These are the interesting questions we seek to answer in this project. Another
question that we consider is how to find semantically coherent tensor blocks from real-world
tensors. To address this question, we propose Bayesian Tensor Blockmodel to find dense
tensor blocks that are explained by semantically meaningful concepts along each mode of
the tensor block.

Outline: The rest of the paper is organized as follows. We begin by formally describing
the problem statement in Section 2 and provide an in-depth literature survey in Section 3.
Next we describe the datasets which we would to evaluate all of our methods in Section 4.
Then we start addressing the goals of the paper, one by one, beginning with finding interest-
ing facts in Section 5, finding important facts in Section 6 and finding semantically coherent
facts in Section 7. In all of the proposed approaches we demonstrate that efficacy through
carrying out experiments on the dataset described. Finally, we conclude in Section 8.

2 Problem Definition

We limit ourselves to multi-relational data in the form of triplets, where two entries belong
to the same universe, e.g. in the subject-verb-object case, both subject and object come
from the same universe of nouns. A scalar is denoted by lower-case italic letter or greek
letter, e.g. d, α. A vector is denoted by a bold lower-case letter, e.g. v whose ith entry is
v(i). Matrices are denoted by bold upper-case letters, e.g. W with (i, j)th entry W (i, j).
Sets are denoted by upper-case calligraphic letters, e.g. A. Tensors are denoted by upper
case frakturs letters X whose (i, j, k)th entry is X(i, j, k). Table 1 gives a list of common
symbols we used.

The main motivation behind our method is to find most interesting triplets from a given
(possibly huge) set of facts as subject-verb-object triplets. Here both subject and object
belong to the same universe. If instead of triplets, suppose we were only provided with a list
of subject-object pairs L = {(a1, b1), ..., (al, bl)}. Then it can be represented as a directed
graph G = (V,E) with set of vertices V = S = noun and edges E = L as shown in figure
1(a). Then most popular vertex can be found using the PageRank algorithm.

But now we have a list of subject-verb-object triplets L = {(a1, c1, b1), ..., (al, cl, bl)}.The
triplets can be viewed as a labelled multi-graph G = (V,E,A) with set of vertices V = S =
noun and edges E = L having labels from set A = verbs shown in figure 1(b). Finding
popular and interesting facts now becomes a challenging and open problem, which we aim
to target. We also address the question of finding dense tensor blocks in a given tensor that
can be coherently explained by topics built on words used to describe dimensions of each
mode of the tensor.

Also a big question, is what do we precisely mean by interesting fact? Unlike popularity

2



Cat

Milk

Fish

Human

Collar

Biscuit

Dog

(a) Directed graph of subject-object pairs

Cat

Milk

Fish

Human

Collar

Biscuit

Dog

drinks

eats

likes

drinks

sells

catches

eats

adores

buys

eats

walks

wears

eats

(b) Labelled directed multi-graph of subject-verb-object triplets

Figure 1: Representative graphical representation
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Symbol Definition
X Tensor containing data
T Tensor containing transition probabilities
S Set of vertices/nouns
A Set of relations/verbs
n Number of vertices/nouns
m Number of relations/verbs
l Number of entries in the tensor
X(k) mode-k matricization of a tensor
◦ outer product
� Khatri-Rao product
∗ Hadamard Product

Table 1: Symbols and definitions

or importance which have been well studied, the interestingness is much more complicated
and not studied yet much to the best of our knowledge. To elaborate, spotting obscure facts
about an obscure entity is not very interesting, e.g. “Riemann zeta function obeys analytic
continuation”. However, to humans it is very interesting in spotting an obscure fact about a
popular entity. For example, everybody would be interested to know that “Michael Jordan
(a famous basketball player) is afraid of water”. Thus, specificity in a fact is strong indicator
of surprise factor present in it. So we wish to mine for such facts from the tensor.

3 Survey

Next we list the papers that each member read, along with their summary and critique.

3.1 Papers read by Abhinav Maurya

3.1.1 Local Low-Rank Matrix Approximation [4]

• Main idea: The paper relaxes the low-rank assumption often made in matrix decompo-
sition. Instead, the assumption is that the matrix is a weighted combination of matrices
that are low-rank in specific neighborhoods of the matrix indices. This assumption is
less restrictive than a low-rank assumption which forces the same latent factors to be
shared throughout all neighborhoos of indices. Low-rank matrix approximation is done
using two methods:
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– Incomplete SVD: The matrix X is usually only sparsely observed and is therefore
incomplete. This method constructs a low-rank approximation X′ by minimizing
its error with X on the observed entries.

– Compressed Sensing: This method minimizes the nuclear norm of the approxi-
mation X (since nuclear norm is the convex surropagte of the rank of a matrix)
and such that the Frobenius norm of the difference between X and X′ projected
only on the observed entries is less than the desired error ε.

The paper reformulates these two ways of matrix completion for local low-rank matrix
completion by choosing q local models T̂1, T̂2, .., T̂q and combining these local models
using the Watson-Nadaraya locally constant nonparametric regression to estimate the

approximation ˆ̂T .

ˆ̂T (s) =

q∑
i=1

Kh(si, s)∑q
j=1Kh(sj, s)

T̂ (si)

where s, si, sj ∈ [n1]× [n2] i.e. they index into the matrix of dimensions n1×n2. Thus,

the approximation at index s is the locally weighted average of local models T̂ (si) at
certain chosen indices si.
• Use for our project: We believe that tensors might have local low-rank structure just

like matrices. Allowing local low-rank tensor decomposition might help us gain more
accurate approximations for tensors.
• Salient Contributions: The paper relaxes the low-rank structure which might not be

accurate for extremely large matrices. Instead, it introduces local low-rank assumption
and finds better approximation methods for matrices that satisfy this assumption.
• Shortcomings: The paper assumes that there are q local low-rank models which are

learnt by sampling q local neighborhoods from the observed entries of the matrix.
Introducing bias in the sampling process may introduce the efficacy of the discovered
q local models. Also, the combination of these local models using Watson-Nadaraya
estimator instead of finding the combining weights using a principled optimization
problem is unsatisfactory.

3.1.2 ParCube [7]

• Main idea: The central idea of ParCube is to sample a massive tensor such that the
resultant sampled tensor can be used for decomposition instead of the original tensor.
Instead of uniformly sampling from each mode, ParCube uses biased sampling, where
the bias on each mode is dependent on the marginal sum of tensor entries on that mode.
The computational complexity of the sampling algorithm is linear in the number of non-
zero entries of the original tensor being sampled. Once we obtain the sampled tensor,
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any Parafac decomposition can be applied. After the decomposition, the factors are
expanded out and redistributed to their original positions i.e. the values of indices that
were not included in the sampling will be zero in the redistributed factors, inducing a
natural sparsity in the reconstructed tensor approximation. The sampling of indices
on each mode of the tensor is biased using the marginal sums across the mode. This
does not take into account the distribution of values along that mode. If there are huge
outlier, noisy values in the tensor, the sampling step will bias the sampling towards
the indices of these outlier values. To counteract the sparsity enforced by sampling
just once, the ParCube decompsosition algorithm maintains multiple sampled tensors
and their decompositions and stitches these decompositions together using a common
set of indices across all the samples.
• Use for our project: We propose to use NELL dataset as our main dataset. The

massive dataset consists of a highly sparse 20M x 10 M * 20M tensor where the modes
are subject, verb, and object. ParCube will help us decompose this tensor into highly
sparse factors. These factors will be used to construct an appropriate reward function
for an MDP that will find the most interesting verb and object for a given subject
through a value iteration procedure.
• Salient Contributions: The sampling procedure makes it possible to factor massive

tensors on commodity workstations, and stitch together multiple such tensor decom-
positions to get a sparse decomposition for the original tensor.
• Salient Shortcomings: The ParCube method does not enforce that the sparse set of

indices be different across different factors of the decomposition. Indeed, in the final
algorithm, a common set of indices across the various sampled tensors is used to stitch
the factors across the decompositions together. Enforcing disjointness across the sparse
set of indices of different factors of a tensor decomposition is useful because it helps us
discover locally low-rank tensor structure, similar to recent work on locally low-rank
matrix decompositions.

3.1.3 GigaTensor [2]

• Main idea: The paper describes extensions to ParaFac tensor implementation to exe-
cute it on a distributed Hadoop system. The extensions allow decomposition of massive
sparse tensors that do not fit in the main memory of a single system. If X is the tensor
and A, B, and C are its factor matrices (the three vectors along the three modes in
the single-rank tensor factor are stored in A, B, and C), then the Alternating Least
Squares (ALS) method involves the following step:

A← X(1)(C�B)(BTB ∗CTC)†
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The first optimization to use the associativity of matrix multiplication to multiply
X(1) and (C � B) first. The second optimization is to not instantiate (C � B) and
then multiply X(1) with it. Instead, an intelligent multiplication method is outlined
in Algorithm 2 of the paper, to avoid the intermediate data explosion. Again to
avoid data explosion, the outer products in (BTB ∗CTC) are calculated in a parallel
fashion. The calculation of Moore-Penrose Pseudoinverse of (BTB ∗ CTC) is easy
since the matrix is small (i.e. R × R). Finally the multiplication of X(1)(C � B)
and (BTB ∗CTC)† is done using distributed cache multiplication by broadcasting the
smaller matrix (BTB∗CTC)† to the mappers that process the larger matrix X(1)(C�B)
is a distributed fashion. GigaTensor makes possible the multiplication of tensors of sizes
hundred times larger than those of tensors that could be decomposed earlier.
• Use for our project: The paper uses the NELL dataset, which we propose to use for our

evaluation. We intend to use a tensor decomposition to discover concepts in the NELL
dataset, and will require a scalable sparse tensor decomposition like GigaTensor in the
first step of our goal of discovering the most interesting subject-verb-object triplets in
the NELL dataset.
• Salient Contributions A careful analysis of the various operations involved in the ALS

method of tensor decomposition leads to a highly distributed solution with major gains
in speedups and the sizes of tensors that can be decomposed.
• Salient Shortcomings: The paper compares GigaTensor to the Tensor Toolbox which

has not been parallelized. A comparison with a toolbox that utilizes parallelized matrix
operations might have been more appropriate. Another option is to provide the huge
matrices to be multiplied to a general distributed Hadoop matrix multiplier instead of
hand-crafting a particular solution for the three-way tensor decomposition. Since the
optimizations are tuned to three-way tensor decomposition, it is also not clear if the
method performs well on the decomposition of general sparse n-way tensors.

3.2 Papers read by Manzil Zaheer

3.2.1 PageRank [1]

The first paper was on the PageRank by Brin and Page [1].

Main idea : PageRank algorithm is how Google got started ranking web pages. It involves
random walks in directed graphs. PageRank considers a random walk that with probability
d follows a random edge out of the present node, and with probability 1 − d jumps to a
uniformly random vertex of a graph. The PageRank vector is the steady-state distribution
of this process. That is we have a transition probability P{Xt+1 = i2|Xt = i1}, which can
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be estimated as:

W(i1, i2) =
X(i1, i2)∑n
i2=1 X(i1, i2)

(1)

where X is the adjacency matrix of the graph. Then PageRank vector r∗ will satisfy:

r∗ =
(1− d)

n
1 + dWr∗ (2)

The vector r contains the score indicating importance of vertices (webpages).

Use for our project : Lays foundation of Random walks and its usefulness in finding
most popular vertices

Shortcomings : Limited to simple graphs

3.2.2 Markov Decision Process [6]

The second paper was the book-chapter on Markov Decision Process by Mahadevan [6]. We
describe this topic in detail, because we will need the details in describing the details of our
proposed method.

A Markov decision process (MDP) is a tool to plan efficiently if the results of actions
executed are uncertain. To be precise, the MDP is a 4-tuple Ξ = (S,A,R, T ), defined as:

• S is the set of states in the system and set n = |S|. At every instant, the system must
be one of the state s ∈ S.

• A is set of actions and set m = |A|. At each time step we can choose to take one of
the action, i.e. carry out one of the action.

• R : S ×A× S → R is the reward function.

• T : S × A → Π(S) is the conditional transition probability of moving to a new state
St+1 ∈ S given current state St ∈ S and action At ∈ A. This can be represented as a
tensor τ(s, a, s+) = P(St+1 = s+|St = s, At = a).

Under assumptions of this model, the system evolves as follows: at each time point, the
system is in a particular state, s, an action a is taken and there is a transition to another
state s+. However, we require that the state depend only upon s and a. In addition, s and
a only give probabilistic information about what the resulting state will be according to.
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Having described all the quantities of interest, the intention is to find a policy π∗ ∈ A|S|,
specifying which algorithm to run so as to maximize our expected rewards, i.e.

π∗ = arg max
π∈A|S|

vπ (3)

where vπ(S0) = E

[
∞∑
t=0

γtR(St, π(St), St+1)

]
(4)

Now define r(s, a) =
∑

s+∈S τ(s, a, s+)R(s, a, s+) for simplicity. Now observe that following
recurrence relation holds:

vπ(s) = r(s, π(s)) + γ
∑
s+∈S

τ(s, π(s), s+)vπ(s+) (5)

Then we can show that optimal reward value and policy is the fixed point solution of the
celebrated Bellman equation:

v∗(s) = max
a∈A

[
r(s, a) + γ

∑
s+∈S

τ(s, a, s+)v∗(s+)

]

π∗(s) = arg max
a∈A

[
r(s, a) + γ

∑
s+∈S

τ(s, a, s+)v∗(s+)

] (6)

With abuse of notation, we can write it in vector format as:

v∗ = max
a∈A

[r(:, a) + γT (:, a, :)v∗] (7)

We will use this MDP as new way to perform random walk to over the most “interesting”
triplets as explained further in section 6.

3.2.3 Centrality Measure

I studied two papers about centrality measure. In the study of networks, a ”centrality”
measure attempts to measure the importance of a node, an edge, or some other subgraph.
As discussed before, PageRank provides a centrality measure on simple graphs. There have
been attempts to generalize this or come up with different centrality measure for multi-
graphs. We describe two of such methods, relevant to our project:
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TOPHITS [3]

• Main idea: This paper provides modified version of the HITS algorithm. Basically
HITS (hyperlink-induced topic search) views Web as a graph and provides a centrality
measure composed of hub and authority scores for every vertex using a singular value
decomposition (SVD) of the adjacency matrix of the graph. In TOPHITS, a third
dimension representing anchor-text is added, which is claimed to be useful for web
searches because“it behaves as a consensus title”. Then, similar to HITS, they perform
the tensor-decomposition method PARAFAC (which is a generalization of the matrix
SVD) to obtain a rank-R approximation of the tensor. These PARAFAC decomposition
tries to explain the data using the R topics. The singular values provide weight of the
topic and the singular vectors provide the hub, authority and term score for each vertex
for that topic. Now using these scores, they specify methods (simple linear operations)
to answer two types of queries in a ranked fashion: find all pages related to a given
term and find all pages related to a given webpage.

• Use for our project: To solve the PARAFAC decomposition an alternating least square
method is proposed along with tricks to take advantage of the extremely sparse nature
of the tensor. We can use this method in our computation of reward function, as
discussed in the section 6

• Shortcomings: Limited type of queries can be performed.

HAR [5]

• Main idea: This paper provides a generalization of the classic PageRank algoirthm
for multi-relational data. Basically, they view the multi-relational data as a labelled
directed multi-graph, where edges are labelled with type of relation. Then they consid-
ered a random walker in the multi-graph to yield hub, authority and relevance scores
(similar to TOPHITS) for nodes. These three scores are interleaved as high hub score
vertex that points to many objects with high authority scores through relations of high
relevance.

The random walk on the multi-graph has three attributes when visiting any particular
object: hub, authority and relevance, denote them by random variables Xt, Yt and
Zt. Thus we need to have three transition probabilities Pr{Xt = i1|Yt = i2, Zt = j},
Pr{Yt = i2|Zt = j,Xt = i1}, Pr{Zt = j|Yt = i2, Xt = i1} which can be estimated as
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following tensors:

H(i1, i2, j) =
X(i1, i2, j)∑n
i1=1 X(i1, i2, j)

A(i1, i2, j) =
X(i1, i2, j)∑n
i2=1 X(i1, i2, j)

R(i1, i2, j) =
X(i1, i2, j)∑m
j=1 X(i1, i2, j)

(8)

Like PageRank, again the HAR score will satisfy the following equations:

x̄ = (1− α)o + αHȳz̄

ȳ = (1− β)o + βAx̄z̄

z̄ = (1− γ)r + γRx̄ȳ

(9)

where o and r are probability distributions over webpages and relations. The paper
proves existence of solution and provides algorithm to solve this system of equations.
These vectors contain the hub, authority and relevance scores for each vertex and
relation respectively for the given query.

• Use for our project: Idea to represent triplet data as a multi-graph

• Shortcomings: Makes a questionable assumption about joint stationary distribution of
x,y, z being independent.

The so-called “interesting” objects are not defined/described properly, which are used
the construct the o and r vectors. Moreover, this way we obtain the most relevant
vertices to our query, and not the most interesting ones!

4 Dataset

In this section, we provide the background for our choice of datasets and toolboxes used in
our experiments.

4.1 Datasets

We test our methods on two datasets of different nature. It is difficult to measure interest-
ingness or surprise factor of a fact objectively. To best of our knowledge, we could not find
any method for the task. We employ an ad hoc to measure: We fix a set of queries and run
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all the proposed method for that set. Then, we subjectively judge if we the facts returned
by the algorithm on the fixed query set is surprising or not. We describe these two datasets
below and list the fixed query set.

4.1.1 Nell KB

To test our method, we created a three-mode tensor using the publicly available NELL
knowledge base. Each fact in the NELL knowledge base consists of a subject, a relation,
an object, and a score between 0 and 1 indicating the confidence of the NELL learning
system in the fact. The datasets are available at the NELL project website1. We construct
a three-mode tensor corresponding to the subjects, relations, and objects. The universe
from which subject and object entities are picked is the same. The entries in the tensor are
real-valued between 0 and 1. The (i, j, k)th entry in the tensor corresponds to the triplet
subjecti − relationj − objectk in the NELL KB. The the (i, j, k)th entry is populated with
the confidence score of the fact subjecti − relationj − objectk in the NELL KB.

Table 2: Query Set

Subject/Object (Nouns) Relation (Verbs)

graphical models attractionofcity

mahatma gandhi weaponmadeincountry

nelson mandela countryalsoknownas

pnc wineryproduceswine

research bankboughtbank

4.1.2 Yago KB

To test our method, we create a three-dimensional tensor using the publicly available Yago
knowledge base. The knowledge base is available from MPI’s website2. The dataset is pro-
vided in the form of subject-rel-object triplets, where rel is an asymmetric relation between
subject and object. We construct a tensor which has three modes - one each for subjects,

1http://rtw.ml.cmu.edu/resources/results/08m/?C=S;O=D
2www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/yago/
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relations, and objects. The entries in the tensor are binary. If the (i, j, k)th entry in the
tensor is 1, then the fact subjecti− relationj− objectk exists in the Yago KB. Similarly, 0 in
the (i, j, k)th entry indicates that the fact subjecti − relationj − objectk was not mentioned
in the KB.

Table 3: Query Set

Subject/Object (Nouns) Relation (Verbs)

Barak Obama influences

Carnegie Mellon University hasAcademicAdvisor

Stanford University actedIn

California hasWonPrize

Napa County, California holdsPoliticalPosition

4.1.3 Cleanup

After procuring the NELL and Yago datasets and extracting sparse tensors from these
datasets, we cleaned up certain dominant and uninformative tuples like “hasWebsite” and
“hasWikipediaUrl” which are one-to-one relations and not very helpful in discovering infor-
mation structure. We refer to the cleaned tensors obtained as the NELL and Yago datasets
as NellTensor and YagoTensor respectively.

4.2 Tools

We used Matlab to prototype our methods. To deal with the highly sparse nature of the Yago
tensor, we use the Tensor Toolbox3 provided by Dr. Kolda of Sandia National Laboratories.
It provides an immensely useful implementation of various operators on sparse tensors. We
note that our methods can be useful with dense tensors as well as long as the tensor factors
are available using a toolbox for dense tensors, such as the N-Way Tensor Toolbox.

We also use ParCube, a system for decomposition of a sparse tensor into sparse factors.
ParCube (which was surveyed in the related works section) makes it possible to parallelize the
Kruskal decomposition of a sparse tensor by decomposing various subtensors of the original

3http://www.sandia.gov/ tgkolda/TensorToolbox/index-2.5.html
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tensor and stitching the results together to give the Kruskal decomposition of the original
tensor. While ParCube did offer significant advantages in terms of speedup, we observed that
some of the values in the tensor factors obtained using this method were extremely huge or
NaN. This was not the case with the cp als method provided in the Tensor Toolbox. Thus,
we found that the results from ParCube on the Yago and NELL tensor were not very suitable
for explanatory mining of interesting aspects from the tensors.

5 Interestingness: CF-ICF

5.1 Description

We want an indication of the interestingness or the surprise of a subject-verb-object triplet.
As discussed in the introduction, for interestingness we are looking for facts consisting of
an obscure fact of popular entity. For this purpose, we generalize the popular concept of
term frequencyinverse document frequency (tf-idf), which is a numerical statistic that is
intended to reflect how important a word is to a document. According to our definition of
interestingness among all the facts related to the query, we want to get the fact for which
one of the term is very popular (occurs with a high frequency) and another terms occurs
very rarely. So we can say that we want to choose the fact that maximizes the product of
Corpus-Frequency(CF) and Inverse-Corpus-Frequency (ICF).

Moreover, we want to get rid of all global topics/concepts present in the knowledgebase.
Because anything that can be inferred from a global structure would not be interesting. For
this purpose we decompose the tensor, then each rank-1 factor would correspond to a global
concept explaining the entries of the tensor. Once we subtract the contribution from such
rank-1 factors, we are effectively removing the simple global low-rank structure from the
tensor and capturing the more interesting local effects in the residual tensor. We define the
residual tensor as the original tensor minus its rank-1 factors. Since we only care about the
entries in the original tensor, we also project the residual tensor to be non-zero only at the
entries where the original tensor was non-zero.

We can find out the low-rank tensor approximation by carrying out ALS/ParCube on
the data tensor to obtain:

X ≈
R∑
r=0

λrar ◦ br ◦ cr (10)

To calculate the reward function, we would like to find localized dense clusters of subject-
verb-object interactions which are not explained by the low-rank tensors that approximate
the entire tensor. Such clusters will emerge when we subtract the tensor decomposition
factors from the original tensor to get the residual tensor. Our analysis reveals that such a
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Figure 2: Kruskal Decomposition of Tensor X

residual tensor will not be sparse and hence we do not want to instantiate the residual tensor.
Instead we only calculate the residual tensor at the indices where the original tensor had
non-zero values. This is natural since we only want to calculate the interestingness (through
the residual) of subject-verb-object triplets that actually appeared in the dataset. If A is
the set of indices where the original tensor had non-zero entries, we calculate the residual as
follows:

R = ΠA

(
X−

R∑
r=0

λrar ◦ br ◦ cr

)
where the term inside the brackets is the actual residual and ΠA(·) is the projection of
the actual residual on the non-zero entries of the original tensor. Once we have the sparse
residual, we expect to see localized clusters of subject-verb-object triplets in the residual
since the low-rank structure common to the entire tensor has been subtracted out. We have
thought of efficient ways to mine these clusters on massive tensors and use them to calculate
the reward function for the MDP iteration.

We consider reward functions based on specificity. To describe the reward function, we
need to specify the value of function r(s, a, s′) for each source state s, destination state s′,
and action a′ which takes us from s to s′. In the case of the Yago tensor, the universe of
states corresponds to the entities in the Yago KB and the universe of actions corresponds
to the possible relations between two entities. Similarly, in the NELL dataset, the states
correspond to the subjects and objects in the tuples while the actions correspond to the verbs
in the tuples between the subject and object. We consider the following reward function or
interestingness score:
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r(s, a, s′) = min

{
X(s, a, s′) ·

∑
∀s′ X(s, a, s′)∑
∀aX(s, a, s′)

,X(s, a, s′) ·
∑
∀aX(s, a, s′)∑
∀s′ X(s, a, s′)

}
(11)

To understand this score, consider X(s, a, s′) ·
∑

∀s′ X(s,a,s
′)∑

∀a X(s,a,s′)
. By minimizing this expres-

sion for a given s, we are finding a and s′ that jointly minimizes X(s, a, s′), minimizes∑
∀s′ X(s, a, s′) and maximizes

∑
∀aX(s, a, s′). This corresponds to finding the a and s′ pair

that is the most specific to s, while maximizing the specificity of a and minimizing the
specificity of s′. We have chosen this interestingness function because we want to discover a
relatively unknown aspect of a well-known subject as this will be fairly surprising to most
human evaluators. Spotting obscure facts about an obscure entity is not as interesting to
humans as spotting an obscure fact about a popular entity. The explanation for the second

similar part of the interestingness function X(s, a, s′) ·
∑

∀a X(s,a,s′)∑
∀s′ X(s,a,s

′)
follows a similar explana-

tion where we are looking for minimizing the specificity of a and maximizing the specificity
of s′.

Due to numerical instability in the factors obtained from ParCube, we chose to use
the tensor factors provided by the cp als routine in the further steps of our experiments.
cp als of YagoTensor gives a ktensor object in Matlab, which stores a tensor as a Kruskal
decompsition and provides any entry of the tensor by computing it on the fly from the
factors. Kruskal decomposition of a tensor represents a tensor as a sum of rank-1 tensors,
which are obtained from the outer product of a vector along each mode. It is illustrated in
figure 2.

5.2 Experimental Results

5.2.1 Yago - Original Tensor

We calculate the projected residual of the tensor T from its cp als decomposition P as
follows:

Π(P) = T − T . ∗ P (12)

where .∗ indicates the elementwise product between tensors of identical dimensions. Since
T and P are both stored as special sparse tensors, the elementwise dot-product can be
performed without leading to an out-of-memory error. T . ∗P is the projection of the tensor
reconstruction P onto the non-zero entries of the original tensor T . Finally, we subtract
this projection of the tensor reconstruction from the original tensor T to get the projected
residual Π(P).

Here, we use the YagoTensor dataset. In the interestingness function, we use the
YagoTensor T in place of X. The results are presented in Table 4.
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5.2.2 Yago - Projected Residual

Here, we again use the YagoTensor dataset. In the interestingness function, we use −Π(P)
in place of X where Π(P) is the projection of the residual of the YagoTensor on the non-
zero entries in the YagoTensor. We found that using the projected residual gives more
interesting/surprising results on our evaluation set. The results are presented in Table 5.

5.2.3 NELL - Original Tensor

Here, we use the NellTensor. In the interestingness function, we use the NellTensor T in
place of X. We find that our method detects the most surprising facts from the NELL
dataset – facts that are in the NELL Knowledge Base but we have verified to be actually
false. It makes sense that these false facts are returned as interesting/surprising results from
the NellTensor. We believe that our method can be used to point out NELL facts whose
validity and confidence needs to be verified by a human evaluator. The results are presented
in Table 6.

5.2.4 NELL - Projected Residual

The results using the projected residual of the NellTensor are reported in table 7. In the
interestingness function, we use −Π(P) in place of X where Π(P) is the projection of the
residual of the NellTensor on the non-zero entries in the NellTensor.

5.3 Analysis of Results

We find that using specificity of a fact as a measure of interestingness yields some good
results that are interesting to the person who wants to know about the entities involved in
those facts. We also note that sometimes tensor decomposition is not the best way to find out
latent structure. Consider the matrix slice obtained from the Yago tensor by restricting to
the “hasWebsite” relation. The sparsity pattern of this matrix slice is visualized in figure 4.
We see that the two dimensions are not independent at all. Hence, a low-rank decomposition
will not be able to reconstruct such a matrix slice or the tensor that contains it. Further
analysis on the matrix slice also revealed that it also doesn’t obey any obvious power laws
in terms of the distribution of frequencies of magnitudes.

Also, due to the dominance of sparse random noise in the tensor, low-rank decomposition
using 100 factors led to poor reconstruction accuracy. The ratio of the norm of the projected
residual and the original tensor was 4.9

5.1
, indicating that much of the noise of the original

tensor was still present in the residual. This points to the fact that the original tensor has a
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lot of sparse noise to begin with. A manual inspection of the facts in the NELL KB confirms
this.
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Figure 3: Matrix Slice for “hasWebsite” relation

6 Importance: MDP

6.1 Description

This approach is motivated from the success of PageRank algorithm. The PageRank provides
an importance score for all vertices in a normal graph. Unfortunately, the PageRank algo-
rithm only works for matrices and its extension for tensors is non-trivial. But, if we observe
a big similarity between the Bellman equation for MDP and the PageRank equation and
thus look at Bellman equation as a generalization of PageRank for multi-graph with score
given by the value vector rather than the eigenvector. Next, we describe this connection in
more details.
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Table 4: Examples of interesting facts from Yago KB using original Tensor

Query Outcome

S
u
b

je
ct

Barack Obama
Barack Obama created Of Thee I Sing (book)
Barack Obama created The Audacity of Hope
Barack Obama created We Are the Ones

Carnegie Mellon University
Carnegie Mellon University created GraphLab
Carnegie Mellon University created CMU Pronouncing Dictionary
Carnegie Mellon University created Mach (kernel)

Stanford University
Stanford University created Storage@home
Stanford University created Stanford Shopping Center
Stanford University created EteRNA

California
California hasWebsite http://www.ca.gov/
California isLocatedIn United States
California participatedIn Pitt River Expedition

Napa County, California
Napa County California isLocatedIn United States
Napa County California isLocatedIn San Francisco Bay Area
Napa County California isLocatedIn California

R
e
la

ti
o
n

influences
Elvis Presley influences Samuel Hui
The Beatles influences Donald Gallinger
The Beatles influences Gerwin van der Werf

hasAcademicAdvisor
Gottfried Leibniz hasAcademicAdvisor Erhard Weigel
Andrew Hill hasAcademicAdvisor Fulvio Melia
Richard Dawkins hasAcademicAdvisor Nikolaas Tinbergen

actedIn
David Bowie actedIn Everybody Loves Sunshine
Roscoe Arbuckle actedIn Killing Horace
Roscoe Arbuckle actedIn The Baggage Smasher

hasWonPrize
Gnther Mller-Stckheim hasWonPrize Knight’s Cross of the Iron
Cross
Hans Bartels hasWonPrize Knight’s Cross of the Iron Cross
Richard Ruoff hasWonPrize Knight’s Cross of the Iron Cross

holdsPoliticalPosition
Alfred Boultbee holdsPoliticalPosition Member of Provincial Par-
liament (Ontario)
Oliver Aiken Howland holdsPoliticalPosition Member of Provincial
Parliament (Ontario)
Thomas Fraser (Upper Canada politician) holdsPoliticalPosition
Member of Provincial Parliament (Ontario)

O
b

je
ct

Stanford University
Sara Hall isAffiliatedTo Stanford University
Foluke Akinradewo isAffiliatedTo Stanford University
Alix Klineman isAffiliatedTo Stanford University

Carnegie Mellon University
Demetri Psaltis graduatedFrom Carnegie Mellon University
Peter A. Freeman graduatedFrom Carnegie Mellon University
James Knepper graduatedFrom Carnegie Mellon University

Barack Obama
Barack Obama Sr. hasChild Barack Obama
Ann Dunham hasChild Barack Obama
Ann Dunham hasChild Barack Obama

California
Powellton Meadow California isLocatedIn California
Bradtmoore California isLocatedIn California
Tsuka California isLocatedIn California

Napa County, California
Lake Berryessa isLocatedIn Napa County California
Beaulieu Vineyard isLocatedIn Napa County California
Napa County Airport isLocatedIn Napa County California
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Table 5: Examples of interesting facts from Yago KB using residual Tensor

Query Outcome

S
u
b

je
ct

Barack Obama
Barack Obama created Of Thee I Sing (book)
Barack Obama created The Audacity of Hope
Barack Obama created We Are the Ones

Carnegie Mellon University
Carnegie Mellon University created Emergent (software)
Carnegie Mellon University created EteRNA
Carnegie Mellon University created GraphLab

Stanford University
Stanford University isLocatedIn Stanford California
Stanford University created Storage@home
Stanford University created Self (programming language)

California
California hasWebsite http://www.ca.gov/
California owns Transportation in Visalia
California owns Keynote Sigos

Napa County, California
Napa County California isLocatedIn United States
Napa County California isLocatedIn California
Napa County California isLocatedIn United States

R
e
la

ti
o
n

influences
Elvis Presley influences Samuel Hui
The Beatles influences Donald Gallinger
The Beatles influences Gerwin van der Werf

hasAcademicAdvisor
Gottfried Leibniz hasAcademicAdvisor Erhard Weigel
Andrew Hill hasAcademicAdvisor Fulvio Melia
Richard Dawkins hasAcademicAdvisor Nikolaas Tinbergen

actedIn
Mizuo Peck actedIn Night at the Museum
Neva Small actedIn Fiddler on the Roof (film)
Jennifer Elise Cox actedIn The Brady Bunch Movie

hasWonPrize
Bentley Kassal hasWonPrize Bronze Star Medal
Charles S. Schepke hasWonPrize Medal of Honor
Alice Pearce hasWonPrize Emmy Award

holdsPoliticalPosition
Louis H. Pollak holdsPoliticalPosition United States District Court
for the Eastern District of Pennsylvania
Irving Lehman holdsPoliticalPosition Chief judge
Alfred Boultbee holdsPoliticalPosition Member of Provincial Par-
liament (Ontario)

O
b

je
ct

Stanford University
Robert S. Smith graduatedFrom Stanford University
Gene D. Block graduatedFrom Stanford University
Gerard Davis isAffiliatedTo Stanford University

Carnegie Mellon University
Demetri Psaltis graduatedFrom Carnegie Mellon University
Peter A. Freeman graduatedFrom Carnegie Mellon University
Ravi Jagannathan graduatedFrom Carnegie Mellon University

Barack Obama
Ann Dunham hasChild Barack Obama
Barack Obama Sr. hasChild Barack Obama
Ann Dunham hasChild Barack Obama

California
Venice Los Angeles isLocatedIn California
Echo Park Los Angeles isLocatedIn California
Rosamond Lake isLocatedIn California

Napa County, California
Lake Berryessa isLocatedIn Napa County California
Beaulieu Vineyard isLocatedIn Napa County California
Napa County Airport isLocatedIn Napa County California
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Table 6: Examples of interesting facts from NELL KB using original Tensor

Query Outcome

S
u
b

je
ct

graphical models
graphical models mlareaexpert nir friedman
graphical models mlareaexpert david heckerman
graphical models generalizations mlalgorithm

mahatma gandhi
mahatma gandhi organizationacronymhasname mohan-
das karamchand gandhi
mahatma gandhi actorstarredinmovie ali jinnah
mahatma gandhi personborninlocation rajghat

nelson mandela
nelson mandela agentcreated robben island
nelson mandela politicianusendorsedbypoliticianus oliver tambo
nelson mandela atdate n1999

pnc
pnc:acquired:washington st louis
pnc parkincity holmdel
pnc bankchiefexecutiveceo larry zimpleman

research
research sportusesequipment research question
research sportusesequipment scientific developments
research agentcompeteswithagent revolvers

R
e
la

ti
o
n

attractionofcity
london attractionofcity london institute
london attractionofcity n32 london
london attractionofcity london institute

weaponmadeincountry
icbm force weaponmadeincountry united states
north korean missile weaponmadeincountry united states
n1973 oil weaponmadeincountry united states

countryalsoknownas
london countryalsoknownas rhodesian
australia countryalsoknownas hutt river province
england countryalsoknownas hun

wineryproduceswine
lemon wineryproduceswine roasted shallots
lemon plant wineryproduceswine roasted shallots
handcraft wineryproduceswine three

bankboughtbank
department bankboughtbank economic security
uk bankboughtbank uk debt
microsoft bankboughtbank musiwave

O
b

je
ct

graphical models
bayes sportusesequipment graphical models
-
-

mahatma gandhi
kottayam cityliesonriver mahatma gandhi
ali jinnah hashusband mahatma gandhi
hindu extremist hasbrother mahatma gandhi

nelson mandela
a long walk to freedom bookwriter nelson mandela
winnie mandela hashusband nelson mandela
bishop desmond tutu politicianusendorsedbypoliticianus nel-
son mandela

pnc
james e rohr ceoof pnc
pnc bank teamhomestadium pnc
pnc bank teamhomestadium pnc

research
eclecticism agentcompeteswithagent research
human diets sportusesequipment research
academic events sportusesequipment research

21



Table 7: Examples of interesting facts from NELL KB using residual Tensor

Query Outcome

S
u
b

je
ct

graphical models
graphical models mlareaexpert nir friedman
graphical models mlareaexpert david heckerman
graphical models generalizations mlalgorithm

mahatma gandhi
mahatma gandhi organizationacronymhasname mohan-
das karamchand gandhi
mahatma gandhi actorstarredinmovie ali jinnah
mahatma gandhi personborninlocation rajghat

nelson mandela
nelson mandela politicianusendorsedbypoliticianus oliver tambo
nelson mandela atdate n1999
nelson mandela agentcreated robben island

pnc
pnc:acquired:washington st louis
pnc parkincity holmdel
pnc bankchiefexecutiveceo larry zimpleman

research
research sportusesequipment research question
research sportusesequipment scientific developments
research agentcompeteswithagent revolvers

R
e
la

ti
o
n

attractionofcity
soho square attractionofcity london
london attractionofcity london institute
barbican hall attractionofcity london

weaponmadeincountry
north korean missile weaponmadeincountry united states
gay marriages weaponmadeincountry california
n1973 oil weaponmadeincountry united states

countryalsoknownas
london countryalsoknownas rhodesian
australia countryalsoknownas hutt river province
england countryalsoknownas hun

wineryproduceswine
lemon wineryproduceswine roasted shallots
blue wineryproduceswine mountain chardonnay
handcraft wineryproduceswine three

bankboughtbank
department bankboughtbank economic security
uk bankboughtbank uk debt
microsoft bankboughtbank musiwave

O
b

je
ct

graphical models
bayes sportusesequipment graphical models
-
-

mahatma gandhi
kottayam cityliesonriver mahatma gandhi
ali jinnah hashusband mahatma gandhi
obama agentcollaborateswithagent mahatma gandhi

nelson mandela
a long walk to freedom bookwriter nelson mandela
winnie mandela hashusband nelson mandela
bishop desmond tutu politicianusendorsedbypoliticianus nel-
son mandela

pnc
james e rohr ceoof pnc
education academicprogramatuniversity pnc
pnc bank teamhomestadium pnc

research
eclecticism agentcompeteswithagent research
human diets sportusesequipment research
academic events sportusesequipment research
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As, discussed in the Section 3, in calculating PageRank score of a node the assumption
is that edges to a vertex indicates its importance. Therefore a vertex with many incoming
links has high importance. So a simple measure of importance is a count of a pages incoming
edges (its indegree). But a more sensible task would be weight the importance of edge by
the importance of node from which the egde is originating. So an edge from a vertex that
has large PageRank, contributes more than a link from a page with low PageRank (all other
things being equal). The effectiveness of PageRank algorithm has been time tested. Thus,
one can conclude that a centrality measure (like PageRank) is a better score than simple
measure of indegree count.

We hope to carry over the similar key idea to tensors/multi-graphs. As discussed in
Section 5 that TF-CF-ICF provides a simplistic measure and using that we want to find a
centrality measure. The MDP with its value vector appeared to be a good candidate for this
purpose.

For this, we consider the process random walk on this multi-graph to find most interesting
triplet. Suppose we are at a vertex s, then we can select a type of edge (basically verb) and
then randomly pick an edge from that type to proceed to a new vertex. With this heuristic,
we can employ MDP to come up with a solution.

As discussed in literature survey, the optimal policy of MDP is obtained through the
value iteration algorithm which tries to find a fixed point solution to the following equation:

v∗ = max
a∈A

[r(:, a) + γT (:, a, :)v∗] (13)

This can be thought of as a generalization of the PageRank algorithm which also tries to
find a fixed point solution to the following equation:

r∗ =
(1− d)

n
1 + dWr∗ (14)

with reward being constant. Note the similarity between the two equations.
In particular,

v∗(s) = max
a∈A

[r(s, a) + γT (s, a, :) · v∗] (15)

where v∗(s) is the value of being in state s. r(s, a) indicates the reward that we are granted
for taking action a from a certain state s. T (s, a, :) is a vector which encodes the transition
probabilities from state s on action a to any other action indicated by the placeholder :. v∗

indicates the vector of values of the states we have transitioned into. γ indicates the decay
factor of the earned reward with time.

In the process of value iteration, we will not need to perform more than O(l), where l is
the number of entries in the data tensor X. This can be more clearly seen if we rewrite the
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recursion as:

v∗(s) = max
a∈A

∑
s+∈S

[
R(s, a, s+)τ(s, a, s+) + γv∗(s+)τ(s, a, s+)

]
(16)

The element-wise multiplication with T ensures that only terms corresponding to non-zero
T play a role.

6.2 Experimental Results

We ran the MDP value iteration as shown in Algorithm 1 for both Yago KB and Nell KB
using the reward function defined in previous section. For Yago, we found that applying the
reward function and choosing the verb-object pair that minimizes r(subject, verb, object) for
a given subject gives fairly important verb-object pairs for that particular subject. Finding
the most important subject-verb pair for a given object and the most important subject-
object pair for a given verb can be done in a similar fashion. Our results for all these
scenarios are presented in the Table 8. Also for NELL, we performed similar experiments
and the result is shown in Table 10.

Algorithm 1 Infinite Horizon Value Iteration

Input: The Markov model Ξ
Output: Value function v∗ and Optimal policy π∗

1: Initialize v∗(s)←∞ for all s ∈ S.
2: Initialize v∗new(s)← 0 for all s ∈ S.
3: while ‖v∗ − v∗new‖ < ε do
4: v∗ ← v∗new
5: for s ∈ S do
6: for a ∈ A do7:

Q(s, a) =
∑
s+∈S

[
R(s, a, s+)τ(s, a, s+) + γv∗(s+)τ(s, a, s+)

]
8: end for
9: v∗new(s) = maxa∈AQ(s, a)

10: π∗(s) = arg maxa∈AQ(s, a)
11: end for
12: end while
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Figure 4: Matrix Slice for “hasWebsite” relation

6.3 Analysis

By visual inspection, the result yielded by the proposed MDP do look the important terms
related to the query term. The result from Nell does not look impressive, but upon manually
exploring those entries we found out there was not any other fact present which could be
have been deemed more important.

We compare our results with the HAR model on the Yago KB query set only. The HAR is
implemented as in Algorithm 2. The results of HAR model are given in Table 9. Comparing
the two, it looks like facts returned by MDP seem to be much more important than the
those returned by HAR.

7 Coherence: BTB

In this section, we describe the Bayesian Tensor Blockmodel (BTB), a method that can
discover and characterize dense and semantically coherent local blocks in the tensor. We
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Table 8: Examples of important facts from Yago KB using MDP

Query Outcome

S
u
b

je
ct

Barack Obama Barack Obama isLeaderOf United States
Carnegie Mellon University Carnegie Mellon University isLocatedIn United States
Stanford University Stanford University isLocatedIn Stanford California
California California isLocatedIn United States
Napa County, California Napa County California isLocatedIn United States

R
e
la

ti
o
n influences H.P. Lovecraft influences Rod Serling

hasAcademicAdvisor Richard Feynman hasAcademicAdvisor John Archibald Wheeler
actedIn Harold Lloyd actedIn Girl Shy
hasWonPrize Rod Serling hasWonPrize Golden Globe Award
holdsPoliticalPosition Arnold Schwarzenegger holdsPoliticalPosition Governor of Califor-

nia

O
b

je
ct

Barack Obama Ann Dunham hasChild Barack Obama
Carnegie Mellon University Richard Duffin worksAt Carnegie Mellon University
Stanford University Donald Knuth worksAt Stanford University
California Battle of Olompali happenedIn California
Napa County, California Lake Berryessa isLocatedIn Napa County California

Algorithm 2 The HAR Algorithm for subject query

Input: The HAR model: tensors H,A and R and query vector s
Output: Three limiting probability distributions x(hub scores), y (authority scores) and z
(relevance values)

1: Initialize x(s),y(s)←∞ for all s ∈ S.
2: Initialize z(a)←∞ for all a ∈ A.
3: Initialize xnew(s),ynew(s)← 0 for all s ∈ S.
4: Initialize znew(a)← 0 for all a ∈ A.
5: Set r← 1/m, o← 1/n.
6: while ‖x̄− x̄new‖+ |ȳ − ȳnew‖+ |z̄− z̄new‖ < ε do
7: x̄← x̄new, ȳ← ȳnew, z̄← z̄new

8: x̄new ← (1− α)s + αHȳz̄
9: ȳnew ← (1− β)o + βAx̄newz̄

10: z̄new ← (1− γ)r + γRx̄newȳnew

11: end while
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Table 9: Examples of important facts from Yago KB using HAR

Query Outcome

S
u
b

je
ct

Barack Obama Barack Obama isMarriedTo Michelle Obama
Carnegie Mellon University Carnegie Mellon University owns Death Risk Rankings
Stanford University Stanford University created SRI International
California California hasCapital Sacramento California
Napa County, California Napa County California isLocatedIn San Francisco Bay Area

R
e
la

ti
o
n influences Karl Marx influences Bill Mitchell (economist)

hasAcademicAdvisor Benjamin C. Pierce hasAcademicAdvisor Robert Harper (computer
scientist)

actedIn Harold Lloyd actedIn Speedy (film)
hasWonPrize Anthony Davis (basketball) hasWonPrize NABC Defensive Player

of the Year
holdsPoliticalPosition Lothar de Maizire holdsPoliticalPosition Council of Ministers of the

GDR

O
b

je
ct

Barack Obama Michelle Obama isMarriedTo Barack Obama
Carnegie Mellon University David Brumley worksAt Carnegie Mellon University
Stanford University Logan Tom playsFor Stanford University
California Klamath Falls Airport isConnectedTo California
Napa County, California Lisa Gansky livesIn Napa County California

Table 10: Examples of interesting facts from NELL KB using original Tensor

Query Outcome

S
u

b
je

ct

graphical models graphical models mlareaexpert daphne koller
mahatma gandhi mahatma gandhi persondeathdate n1947
nelson mandela nelson mandela personhascitizenship south africa
pnc pnc generalizations bank
research research languageofcity washington d c

R
e
la

ti
o
n attractionofcity thameslink attractionofcity london

weaponmadeincountry weapons program weaponmadeincountry united states
countryalsoknownas book:america countryalsoknownas aquarium:us
wineryproduceswine mission wineryproduceswine merlot
bankboughtbank kennedy bankboughtbank stewart
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primarily use the NELL dataset to demonstrate the method since it is much larger and
noisier than the Yago dataset.

7.1 Description

7.1.1 Tensor Decomposition

The first stage of BTB consists of finding a kruskal decomposition of the tensor. We tried two
methods for finding the kruskal decomposition - the cp als method provided in the Tensor
Toolbox provided by Sandia National Laboratories, and the ParCube method. We noticed
that the factors provided by ParCube show signs of numerical instability of the system.
Particularly, we found that some of the entries in the factors provided by ParCube were
either extremely large or NaN. Consequently, we proceeded with the results provided by the
cp als method. We extracted 100 rank-1 factors of the NELL tensor using cp als. We used
a server with 64GB RAM since decomposing the massive NELL tensor is not possible on a
commodity workstation.

7.1.2 Data Generating Process for Bayesian Tensor Blockmodel

After obtaining the rank-1 factors, we perform a Bayesian Tensor Blockmodel analysis on
each factor. We found that each factor contained many semantically distinct concepts and
we believe that the BTB method will help detect and characterize these concepts.

To disentangle these hidden concepts within each factor, we employ a hierarchical bayesian
model which described the generative mechanism of the factor. The model is shown in figure
5. The notation used in the figure is listed in table 11.

The data generating mechanism for a tensor block is as follows:

1. For each mode m ∈ [1, ..,M ], we first sample a dirichlet parameter γmb (for a multi-
nomial distribution over mode’s indices) for each blockmodel b ∈ [1, .., B] using the
hyperparameter ηm.

2. For each mode m ∈ [1, ..,M ], we also sample a dirichlet parameter φmb (for a multino-
mial distribution over words) for each blockmodel b ∈ [1, .., B] using the hyperparam-
eter αm.

3. To generate a tensor entry, we first sample the block to which it belongs. We first
sample a dirichlet parameter θ (for a multinomial distribution over blocks) using the
hyperparameter β. Using multinomial parameter θ, to generate tensor entry Td, d ∈
[1, .., D], we first sample its block zd, d ∈ [1, .., D].

28



4. Once we know the block, we sample its indices along each mode using that particular
block’s distribution over indices γmzd .

5. Further, we also sample the words describing the tensor entry along each mode using
that particular block’s distribution over words φmzd . Unlike the case of indices where
we sample only one index per mode, we can sample N words to describe the entry per
mode as shown in the plate diagram.

We wrote code to perform posterior inference for the above bayesian tensor blockmodel.
We obtained promising results which are presented in a later section.

Symbol Definition
D number of tensor entries
M number of modes of the tensor
B number of tensor blocks
N number of words describing each dimension across each mode
β hyperparameter for distribution over topics
θ distribution over topics
z topic assignment for a particular tensor entry
η hyperparameter to generate distribution over indices
γ distribution over mode’s indices, one for each tensor block
I Index across a mode sampled to generate tensor entry
α hyperparameter to generate topics for each block across each mode
φ topic used to explain a block along a mode
w words sampled to explain

Table 11: Symbols and definitions

7.2 Experimental Results

We will present results of the Bayesian Tensor Blockmodel for one of the thresholded rank-1
factors (which we call Tf ) of the NELL tensor later. For now, we note that it is possible to
perform BTB analysis on Tf because it is a much smaller tensor and has around 3000 indices
across each mode. We believe that this kind of analysis is suitable for massive tensors, where
we first perform a simplistic tensor decomposition as a first step to find factors that capture
much of the magnitude of the original tensor and then detect semantically coherent tensor
blocks from each factor.
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Figure 5: Bayesian Tensor Blockmodel Plate Diagram

We chose a truncated rank-1 factor for the NELL tensor and performed Bayesian Tensor
Blockmodel analysis. We chose to detect 3 tensor blocks from the truncated factor. The
unnormalized distribution over the three blocks is as follows: (5637, 4830, 13283).

7.3 Analysis

TBD
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8 Conclusions and Future Work

We considered the challenging question of finding interesting local structure in tensors. We
investigated the CF – ICF method for finding interesting triplets from a tensor using the
data tensor as well as its projected residual. The method showed promising results as shown
in the experiments. We also investigates the use of MDP as a generalization of PageRank
to detect important triplets from a tensor, and found that the results were better compared
to HAR, current state of the art.

We also described the Bayesian Tensor Blockmodel to detect dense semantically coherent
tensor blocks in a massive tensor. This is still work in progress, and evaluation results using
the method will be shared soon. We plan to improve the tensor decomposition component
of BTB by replacing the Alternating Least Squares (ALS) method from Tensor Toolbox
with a Distributed Stochastic Gradient Descent (DSGD) version that often provides better
reconstruction accuracy with respect to the original tensor. We also plan to tweak the
hyperparameters of the Bayesian Tensor Blockmodel to improve the detection of semantically
coherent hidden tensor blocks.
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A Appendix

A.1 Labor Division

The team performed the following tasks:

• Coming up with CF-ICF [Manzil]
• Formalizing random walks on Tensors [Manzil]
• Formalizing reward function describing “goodness” of triplets [Manzil]
• Implement scalable MDP Value iteration [Manzil]
• Implement Bayesian Tensor Blockmodel [Abinav]
• Explore Yago and Nell datasets and pre-processing [Abhinav and Manzil]
• Experiments on the real data [Abhinav and Manzil]
• Report writing and Software Packaging [Manzil]

A.2 Full disclosure with respect to dissertations/projects

Abhinav: He is not doing any project or dissertation related to this project. His first
paper consists of detecting subtle emerging topics in real-world data streams.

Manzil: He is not doing any project or dissertation related to this project. His thesis is
on Bayesian Non-parametrics and its relations to point process.
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